
GENERAL RELATIVITY &

COSMOLOGY

for Undergraduates

Professor John W. Norbury

Physics Department
University of Wisconsin-Milwaukee

P.O. Box 413
Milwaukee, WI 53201

1997



Contents

1 NEWTONIAN COSMOLOGY 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Velocity and Acceleration Equations . . . . . . . . . . . . . . 7
1.4 Cosmological Constant . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Einstein Static Universe . . . . . . . . . . . . . . . . . 11

2 APPLICATIONS 13
2.1 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Age of the Universe . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Quantum Cosmology . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Derivation of the Schrödinger equation . . . . . . . . . 16
2.4.2 Wheeler-DeWitt equation . . . . . . . . . . . . . . . . 17

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 TENSORS 23
3.1 Contravariant and Covariant Vectors . . . . . . . . . . . . . . 23
3.2 Higher Rank Tensors . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Review of Cartesian Tensors . . . . . . . . . . . . . . . . . . . 27
3.4 Metric Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Special Relativity . . . . . . . . . . . . . . . . . . . . . 30
3.5 Christoffel Symbols . . . . . . . . . . . . . . . . . . . . . . . . 31

1



2 CONTENTS

3.6 Christoffel Symbols and Metric Tensor . . . . . . . . . . . . . 36
3.7 Riemann Curvature Tensor . . . . . . . . . . . . . . . . . . . 38
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.10 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.11 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 ENERGY-MOMENTUM TENSOR 45
4.1 Euler-Lagrange and Hamilton’s Equations . . . . . . . . . . . 45
4.2 Classical Field Theory . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Classical Klein-Gordon Field . . . . . . . . . . . . . . 48
4.3 Principle of Least Action . . . . . . . . . . . . . . . . . . . . 49
4.4 Energy-Momentum Tensor for Perfect Fluid . . . . . . . . . . 49
4.5 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . 51
4.6 Interacting Scalar Field . . . . . . . . . . . . . . . . . . . . . 51
4.7 Cosmology with the Scalar Field . . . . . . . . . . . . . . . . 53

4.7.1 Alternative derivation . . . . . . . . . . . . . . . . . . 55
4.7.2 Limiting solutions . . . . . . . . . . . . . . . . . . . . 56
4.7.3 Exactly Solvable Model of Inflation . . . . . . . . . . . 59
4.7.4 Variable Cosmological Constant . . . . . . . . . . . . . 61
4.7.5 Cosmological constant and Scalar Fields . . . . . . . . 63
4.7.6 Clarification . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7.7 Generic Inflation and Slow-Roll Approximation . . . . 65
4.7.8 Chaotic Inflation in Slow-Roll Approximation . . . . . 67
4.7.9 Density Fluctuations . . . . . . . . . . . . . . . . . . . 72
4.7.10 Equation of State for Variable Cosmological Constant 73
4.7.11 Quantization . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 EINSTEIN FIELD EQUATIONS 83
5.1 Preview of Riemannian Geometry . . . . . . . . . . . . . . . . 84

5.1.1 Polar Coordinate . . . . . . . . . . . . . . . . . . . . . 84
5.1.2 Volumes and Change of Coordinates . . . . . . . . . . 85
5.1.3 Differential Geometry . . . . . . . . . . . . . . . . . . 88
5.1.4 1-dimesional Curve . . . . . . . . . . . . . . . . . . . . 89
5.1.5 2-dimensional Surface . . . . . . . . . . . . . . . . . . 92
5.1.6 3-dimensional Hypersurface . . . . . . . . . . . . . . . 96

5.2 Friedmann-Robertson-Walker Metric . . . . . . . . . . . . . . 99
5.2.1 Christoffel Symbols . . . . . . . . . . . . . . . . . . . . 101



CONTENTS 3

5.2.2 Ricci Tensor . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.3 Riemann Scalar and Einstein Tensor . . . . . . . . . . 103
5.2.4 Energy-Momentum Tensor . . . . . . . . . . . . . . . 104
5.2.5 Friedmann Equations . . . . . . . . . . . . . . . . . . 104

5.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Einstein Field Equations 107

7 Weak Field Limit 109

8 Lagrangian Methods 111



4 CONTENTS



Chapter 1

NEWTONIAN
COSMOLOGY

1.1 Introduction

Many of the modern ideas in cosmology can be explained without the need
to discuss General Relativity. The present chapter represents an attempt to
do this based entirely on Newtonian mechanics. The equations describing
the velocity (called the Friedmann equation) and acceleration of the universe
are derived from Newtonian mechanics and also the cosmological constant
is introduced within a Newtonian framework. The equations of state are
also derived in a very simple way. Applications such as conservation laws,
the age of the universe and the inflation, radiation and matter dominated
epochs are discussed.

1.2 Equation of State

In what follows the equation of state for non-relativistic matter and radiation
will be needed. In particular an expression for the rate of change of density,
ρ̇, will be needed in terms of the density ρ and pressure p. (The definition
ẋ ≡ dx

dt , where t is time, is being used.) The first law of thermodynamics is

dU + dW = dQ (1.1)

where U is the internal energy, W is the work and Q is the heat transfer.
Ignoring any heat transfer and writing dW = Fdr = pdV where F is the
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6 CHAPTER 1. NEWTONIAN COSMOLOGY

force, r is the distance, p is the pressure and V is the volume, then

dU = −pdV. (1.2)

Assuming that ρ is a relativistic energy density means that the energy is
expressed as

U = ρV (1.3)

from which it follows that

U̇ = ρ̇V + ρV̇ = −pV̇ (1.4)

where the term on the far right hand side results from equation (1.2). Writing
V ∝ r3 implies that V̇

V = 3 ṙr . Thus

ρ̇ = −3(ρ+ p)
ṙ

r
(1.5)

1.2.1 Matter

Writing the density of matter as

ρ =
M

4
3πr

3
(1.6)

it follows that
ρ̇ ≡ dρ

dr
ṙ = −3ρ

ṙ

r
(1.7)

so that by comparing to equation (1.5), it follows that the equation of state
for matter is

p = 0. (1.8)

This is the same as obtained from the ideal gas law for zero temperature.
Recall that in this derivation we have not introduced any kinetic energy, so
we are talking about zero temperature.

1.2.2 Radiation

The equation of state for radiation can be derived by considering radiation
modes in a cavity based on analogy with a violin string [12]. For a standing
wave on a string fixed at both ends

L =
nλ

2
(1.9)
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where L is the length of the string, λ is the wavelength and n is a positive
integer (n = 1, 2, 3.....). Radiation travels at the velocity of light, so that

c = fλ = f
2L
n

(1.10)

where f is the frequency. Thus substituting f = n
2Lc into Planck’s formula

U = h̄ω = hf , where h is Planck’s constant, gives

U =
nhc

2
1
L
∝ V −1/3. (1.11)

Using equation (1.2) the pressure becomes

p ≡ −dU
dV

=
1
3
U

V
. (1.12)

Using ρ = U/V , the radiation equation of state is

p =
1
3
ρ. (1.13)

It is customary to combine the equations of state into the form

p =
γ

3
ρ (1.14)

where γ ≡ 1 for radiation and γ ≡ 0 for matter. These equations of state
are needed in order to discuss the radiation and matter dominated epochs
which occur in the evolution of the Universe.

1.3 Velocity and Acceleration Equations

The Friedmann equation, which specifies the speed of recession, is obtained
by writing the total energy E as the sum of kinetic plus potential energy
terms (and using M = 4

3πr
3ρ )

E = T + V =
1
2
mṙ2 −GMm

r
=

1
2
mr2(H2 − 8πG

3
ρ) (1.15)

where the Hubble constant H ≡ ṙ
r , m is the mass of a test particle in the

potential energy field enclosed by a gas of dust of mass M , r is the distance
from the center of the dust to the test particle and G is Newton’s constant.
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Recall that the escape velocity is just vescape =
√

2GM
r =

√
8πG

3 ρr2, so that
the above equation can also be written

ṙ2 = v2
escape − k′13− 2 (1.16)

with k′ ≡ −2E
m . The constant k′ can either be negative, zero or positive

corresponding to the total energy E being positive, zero or negative. For
a particle in motion near the Earth this would correspond to the particle
escaping (unbound), orbiting (critical case) or returning (bound) to Earth
because the speed ṙ would be greater, equal to or smaller than the escape
speed vescape. Later this will be analagous to an open, flat or closed universe.
Equation (1.15) is re-arranged as

H2 =
8πG

3
ρ+

2E
mr2

.13− 3 (1.17)

Defining k ≡ − 2E
ms2

and writing the distance in terms of the scale factor R

and a constant length s as r(t) ≡ R(t)s, it follows that ṙ
r = Ṙ

R and r̈
r = R̈

R ,
giving the Friedmann equation

H2 ≡ (
Ṙ

R
)2 =

8πG
3

ρ− k

R2
(1.18)

which specifies the speed of recession. The scale factor is introduced because
in General Relativity it is space itself which expands [19]. Even though this
equation is derived for matter, it is also true for radiation. (In fact it is also
true for vacuum, with Λ ≡ 8πGρvac, where Λ is the cosmological constant
and ρvac is the vacuum energy density which just replaces the ordinary den-
sity. This is discussed later.) Exactly the same equation is obtained from
the general relativistic Einstein field equations [13]. According to Guth [10],
k can be rescaled so that instead of being negative, zero or positive it takes
on the values −1, 0 or +1. From a Newtonian point of view this corresponds
to unbound, critical or bound trajectories as mentioned above. From a geo-
metric, general relativistic point of view this corresponds to an open, flat or
closed universe.

In elementary mechanics the speed v of a ball dropped from a height r
is evaluated from the conservation of energy equation as v =

√
2gr, where

g is the acceleration due to gravity. The derivation shown above is exactly
analagous to such a calculation. Similarly the acceleration a of the ball is
calculated as a = g from Newton’s equation F = mr̈, where F is the force
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and the acceleration is r̈ ≡ d2r
dt2

. The acceleration for the universe is obtained
from Newton’s equation

−GMm

r2
= mr̈.13− 5 (1.19)

Again using M = 4
3πr

3ρ and r̈
r = R̈

R gives the acceleration equation

F

mr
≡ r̈

r
≡ R̈

R
= −4πG

3
ρ. (1.20)

However because M = 4
3πr

3ρ was used, it is clear that this acceleration
equation holds only for matter. In our example of the falling ball instead of
the acceleration being obtained from Newton’s Law, it can also be obtained
by taking the time derivative of the energy equation to give a = dv

dt = v dvdr =
(
√

2gr)(
√

2g 1
2
√
r
) = g. Similarly, for the general case one can take the time

derivative of equation (1.18) (valid for matter and radiation)

d

dt
Ṙ2 = 2ṘR̈ =

8πG
3

d

dt
(ρR2). (1.21)

Upon using equation (1.5) the acceleration equation is obtained as

R̈

R
= −4πG

3
(ρ+ 3p) = −4πG

3
(1 + γ)ρ (1.22)

which reduces to equation (1.20) for the matter equation of state (γ = 0).
Exactly the same equation is obtained from the Einstein field equations [13].

1.4 Cosmological Constant

In both Newtonian and relativistic cosmology the universe is unstable to
gravitational collapse. Both Newton and Einstein believed that the Universe
is static. In order to obtain this Einstein introduced a repulsive gravitational
force, called the cosmological constant, and Newton could have done exactly
the same thing, had he believed the universe to be finite.

In order to obtain a possibly zero acceleration, a positive term (conven-
tionally taken as Λ

3 ) is added to the acceleration equation (1.22) as

R̈

R
= −4πG

3
(ρ+ 3p) +

Λ
3

(1.23)
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which, with the proper choice of Λ can give the required zero acceleration
for a static universe. Again exactly the same equation is obtained from the
Einstein field equations [13]. What has been done here is entirely equivalent
to just adding a repulsive gravitational force in Newton’s Law. The question
now is how this repulsive force enters the energy equation (1.18). Identifying
the force from

r̈

r
=
R̈

R
≡ Frepulsive

mr
≡ Λ

3
(1.24)

and using

Frepulsive =
Λ
3
mr ≡ −dV

dr
(1.25)

gives the potential energy as

Vrepulsive = −1
2

Λ
3
mr2 (1.26)

which is just a repulsive simple harmonic oscillator. Substituting this into
the conservation of energy equation

E = T + V =
1
2
mṙ2 −GMm

r
− 1

2
Λ
3
mr2 =

1
2
mr2(H2 − 8πG

3
ρ− Λ

3
) (1.27)

gives

H2 ≡ (
Ṙ

R
)2 =

8πG
3

ρ− k

R2
+

Λ
3
. (1.28)

Equations (1.28) and (1.23) constitute the fundamental equations of motion
that are used in all discussions of Friedmann models of the Universe. Exactly
the same equations are obtained from the Einstein field equations [13].

Let us comment on the repulsive harmonic oscillator obtained above.
Recall one of the standard problems often assigned in mechanics courses.
The problem is to imagine that a hole has been drilled from one side of the
Earth, through the center and to the other side. One is to show that if a
ball is dropped into the hole, it will execute harmonic motion. The solution
is obtained by noting that whereas gravity is an inverse square law for point
masses M and m separated by a distance r as given by F = GMm

r2 , yet if one
of the masses is a continous mass distribution represented by a density then
F = G4

3πρmr. The force rises linearly as the distance is increased because
the amount of matter enclosed keeps increasing. Thus the gravitational force
for a continuous mass distribution rises like Hooke’s law and thus oscillatory
solutions are encountered. This sheds light on our repulsive oscillator found
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above. In this case we want the gravity to be repulsive, but the cosmological
constant acts just like the uniform matter distribution.

Finally authors often write the cosmological constant in terms of a vac-
uum energy density as Λ ≡ 8πGρvac so that the velocity and acceleration
equations become

H2 ≡ (
Ṙ

R
)2 =

8πG
3

ρ− k

R2
+

Λ
3

=
8πG

3
(ρ+ ρvac)−

k

R2
(1.29)

and

R̈

R
= −4πG

3
(1 + γ)ρ+

Λ
3

= −4πG
3

(1 + γ)ρ+
8πG

3
ρvac. (1.30)

1.4.1 Einstein Static Universe

Although we have noted that the cosmological constant provides repulsion,
it is interesting to calculate its exact value for a static universe [14, 15]. The
Einstein static universe requires R = R0 = constant and thus Ṙ = R̈ = 0.
The case R̈ = 0 will be examined first. From equation (1.23) this requires
that

Λ = 4πG(ρ+ 3p) = 4πG(1 + γ)ρ. (1.31)

If there is no cosmological constant (Λ = 0) then either ρ = 0 which is an
empty universe, or p = −1

3ρ which requires negative pressure. Both of these
alternatives were unacceptable to Einstein and therefore he concluded that
a cosmological constant was present, i.e. Λ 6= 0. From equation (1.31) this
implies

ρ =
Λ

4πG(1 + γ)
(1.32)

and because ρ is positive this requires a positive Λ. Substituting equa-
tion (1.32) into equation (1.28) it follows that

Λ =
3(1 + γ)

3 + γ
[(
Ṙ

R0
)2 +

k

R2
0

]. (1.33)

Now imposing Ṙ = 0 and assuming a matter equation of state (γ = 0)
implies Λ = k

R2
0
. However the requirement that Λ be positive forces k = +1

giving

Λ =
1
R2

0

= constant. (1.34)
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Thus the cosmological constant is not any old value but rather simply the
inverse of the scale factor squared, where the scale factor has a fixed value
in this static model.



Chapter 2

APPLICATIONS

2.1 Conservation laws

Just as the Maxwell equations imply the conservation of charge, so too do
our velocity and acceleration equations imply conservation of energy. The
energy-momentum conservation equation is derived by setting the covariant
derivative of the energy momentum tensor equal to zero. The same result is
achieved by taking the time derivative of equation (1.29). The result is

ρ̇+ 3(ρ+ p)
Ṙ

R
= 0. (2.1)

This is identical to equation (1.5) illustrating the intersting connection be-
tweeen thermodynamics and General Relativity that has been discussed re-
cently [16]. The point is that we used thermodynamics to derive our velocity
and acceleration equations and it is no surprise that the thermodynamic for-
mula drops out again at the end. However, the velocity and acceleration
equations can be obtained directly from the Einstein field equations. Thus
the Einstein equations imply this thermodynamic relationship in the above
equation.

The above equation can also be written as

d

dt
(ρR3) + p

dR3

dt
= 0 (2.2)

and from equation (1.14), 3(ρ+ p) = (3 + γ)ρ, it follows that

d

dt
(ρR3+γ) = 0. (2.3)

13
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Integrating this we obtain
ρ =

c

R3+γ
(2.4)

where c is a constant. This shows that the density falls as 1
R3 for matter and

1
R4 for radiation as expected.

Later we shall use these equations in a different form as follows. From
equation (2.1),

ρ′ + 3(ρ+ p)
1
R

= 0 (2.5)

where primes denote derivatives with respect to R, i.e. x′ ≡ dx/dR. Alter-
natively

d

dR
(ρR3) + 3pR2 = 0 (2.6)

so that
1

R3+γ

d

dR
(ρR3+γ) = 0 (2.7)

which is consistent with equation (2.4)

2.2 Age of the Universe

Recent measurements made with the Hubble space telescope [17] have de-
termined that the age of the universe is younger than globular clusters. A
possible resolution to this paradox involves the cosmological constant [18].
We illustrate this as follows.

Writing equation (1.28) as

Ṙ2 =
8πG

3
(ρ+ ρvac)R2 − k (2.8)

the present day value of k is

k =
8πG

3
(ρ0 + ρ0vac)R2

0 −H2
0R

2
0 (2.9)

with H2 ≡ ( ṘR)2. Present day values of quantities have been denoted with a
subscript 0. Substituting equation (2.9) into equation (2.8) yields

Ṙ2 =
8πG

3
(ρR2 − ρ0R

2
0 + ρvacR

2 − ρ0vacR
2
0)−H2

0R
2
0. (2.10)
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Integrating gives the expansion age

T0 =
∫ R0

0

dR

Ṙ
=
∫ R0

0

dR√
8πG

3 (ρR2 − ρ0R2
0 + ρvacR2 − ρ0vacR2

0)−H2
0R

2
0

.

(2.11)
For the cosmological constant ρvac = ρ0vac and because R2 < R2

0 then a
non zero cosmological constant will give an age larger than would have been
obtained were it not present. Our aim here is simply to show that the
inclusion of a cosmological constant gives an age which is larger than if no
constant were present.

2.3 Inflation

In this section only a flat k = 0 universe will be discussed. Results for
an open or closed universe can easily be obtained and are discussed in the
references [13].

Currently the universe is in a matter dominated phase whereby the dom-
inant contribution to the energy density is due to matter. However the early
universe was radiation dominated and the very early universe was vacuum
dominated. Setting k = 0, there will only be one term on the right hand
side of equation (1.29) depending on what is dominating the universe. For a
matter (γ = 0) or radiation (γ = 1) dominated universe the right hand side
will be of the form 1

R3+γ (ignoring vacuum energy), whereas for a vacuum
dominated universe the right hand side will be a constant. The solution
to the Friedmann equation for a radiation dominated universe will thus be
R ∝ t 1

2 , while for the matter dominated case it will be R ∝ t 2
3 . One can see

that these results give negative acceleration, corresponding to a decelerating
expanding universe.

Inflation [19] occurs when the vacuum energy contribution dominates the
ordinary density and curvature terms in equation (1.29). Assuming these
are negligible and substituting Λ = constant, results in R ∝ exp(t). The
acceleration is positive, corresponding to an accelerating expanding universe
called an inflationary universe.
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2.4 Quantum Cosmology

2.4.1 Derivation of the Schrödinger equation

The Wheeler-DeWitt equation will be derived in analogy with the 1 dimen-
sional Schrödinger equation, which we derive herein for completeness. The
Lagrangian L for a single particle moving in a potential V is

L = T − V (2.12)

where T = 1
2mẋ

2 is the kinetic energy, V is the potential energy. The action
is S =

∫
Ldt and varying the action according to δS = 0 results in the

Euler-Lagrange equation (equation of motion)

d

dt
(
∂L

∂ẋ
)− ∂L

∂x
= 0 (2.13)

or just

Ṗ =
∂L

∂x
(2.14)

where
P ≡ ∂L

∂ẋ
. (2.15)

(Note P is the momentum but p is the pressure.) The Hamiltonian H is
defined as

H(P, x) ≡ Pẋ− L(ẋ, x). (2.16)

For many situations of physical interest, such as a single particle moving in
a harmonic oscillator potential V = 1

2kx
2, the Hamiltonian becomes

H = T + V =
P 2

2m
+ V = E (2.17)

where E is the total energy. Quantization is achieved by the operator re-
placements P → P̂ = −i ∂∂x and E → Ê = i ∂∂t where we are leaving off
factors of h̄ and we are considering the 1-dimensional equation only. The
Schrödinger equation is obtained by writing the Hamiltonian as an operator
Ĥ acting on a wave function Ψ as in

ĤΨ = ÊΨ (2.18)

and making the above operator replacements to obtain

(− 1
2m

∂2

∂x2
+ V )Ψ = i

∂

∂t
Ψ (2.19)

which is the usual form of the 1-dimensional Schrödinger equation written
in configuration space.
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2.4.2 Wheeler-DeWitt equation

The discussion of the Wheeler-DeWitt equation in the minisuperspace ap-
proximation [20, 21, 11, 22] is usually restricted to closed (k = +1) and
empty (ρ = 0) universes. Atkatz [11] presented a very nice discussion for
closed and empty universes. Herein we consider closed, open and flat and
non-empty universes. It is important to consider the possible presence of
matter and radiation as they might otherwise change the conclusions. Thus
presented below is a derivation of the Wheeler-DeWitt equation in the min-
isuperspace approximation which also includes matter and radiation and
arbitrary values of k.

The Lagrangian is

L = −κR3[(
Ṙ

R
)2 − k

R2
+

8πG
3

(ρ+ ρvac)] (2.20)

with κ ≡ 3π
4G . The momentum conjugate to R is

P ≡ ∂L

∂Ṙ
= −κ2RṘ. (2.21)

Substituting L and P into the Euler-Lagrange equation, Ṗ − ∂L
∂R = 0, equa-

tion (1.29) is recovered. (Note the calculation of ∂L
∂R is simplified by using

the conservation equation (2.5) with equation (1.14), namely ρ′ + ρ′vac =
−(3 + γ)ρ/R). The Hamiltonian H ≡ PṘ− L is

H(Ṙ, R) = −κR3[(
Ṙ

R
)2 +

k

R2
− 8πG

3
(ρ+ ρvac)] ≡ 0 (2.22)

which has been written in terms of Ṙ to show explicitly that the Hamiltonian
is identically zero and is not equal to the total energy as before. (Compare
equation (1.29)). In terms of the conjugate momentum

H(P,R) = −κR3[
P 2

4κ2R4
+

k

R2
− 8πG

3
(ρ+ ρvac)] = 0 (2.23)

which, of course is also equal to zero. Making the replacement P → −i ∂∂R
and imposing HΨ = 0 results in the Wheeler-DeWitt equation in the min-
isuperspace approximation for arbitrary k and with matter or radiation (ρ
term) included gives

{− ∂2

∂R2
+

9π2

4G2
[(kR2 − 8πG

3
(ρ+ ρvac)R4]}Ψ = 0. (2.24)
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Using equation (2.4) the Wheeler-DeWitt equation becomes

{− ∂2

∂R2
+

9π2

4G2
[kR2 − Λ

3
R4 − 8πG

3
cR1−γ ]}Ψ = 0. (2.25)

This just looks like the zero energy Schrödinger equation [21] with a potential
given by

V (R) = kR2 − Λ
3
R4 − 8πG

3
cR1−γ . (2.26)

For the empty Universe case of no matter or radiation (c = 0) the po-
tential V (R) is plotted in Figure 1 for the cases k = +1, 0,−1 respectively
corresponding to closed [21], open and flat universes. It can be seen that only
the closed universe case provides a potential barrier through which tunnel-
ing can occur. This provides a clear illustration of the idea that only closed
universes can arise through quantum tunneling [22]. If radiation (γ = 1 and
c 6= 0) is included then only a negative constant will be added to the poten-
tial (because the term R1−γ will be constant for γ = 1) and these conclusions
about tunneling will not change. The shapes in Figure 1 will be identical
except that the whole graph will be shifted downwards by a constant with
the inclusion of radiation. (For matter (γ = 0 and c 6= 0) a term growing
like R will be included in the potential which will only be important for very
small R and so the conclusions again will not be changed.) To summarize,
only closed universes can arise from quantum tunneling even if matter or
radiation are present.

2.5 Summary
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2.6 Problems

2.1
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2.7 Answers

2.1
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2.8 Solutions

2.1

2.2
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Chapter 3

TENSORS

3.1 Contravariant and Covariant Vectors

Let us imagine that an ’ordinary’ 2-dimensional vector has components (x, y)
or (x1, x2) (read as x superscript 2 not x squared) in a certain coordinate
system and components (x, y) or (x1, x2) when that coordinate system is ro-
tated by angle θ (but with the vector remaining fixed). Then the components
are related by [1] (

x
y

)
=

(
cos θ sin θ
sin θ cos θ

)(
x
y

)
(3.1)

Notice that we are using superscipts (xi) for the components of our or-
dinary vectors (instead of the usual subscripts used in freshman physics),
which henceforth we are going to name contravariant vectors. We empha-
size that these are just the ordinary vectors one comes across in freshman
physics.

Expanding the matrix equation we have

x = x cos θ + y sin θ (3.2)
y = −x sin θ + y cos θ

from which it follows that

∂x

∂x
= cos θ

∂x

∂y
= sin θ (3.3)

23
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∂y

∂x
= − sin θ

∂y

∂y
= cos θ

so that

x =
∂x

∂x
x+

∂x

∂y
y (3.4)

y =
∂y

∂x
x+

∂y

∂y
y

which can be written compactly as

xi =
∂xi

∂xj
xj (3.5)

where we will always be using the Einstein summation convention for doubly
repeated indices. (i.e. xiyi ≡

∑
i xiyi)

Instead of defining an ordinary (contravariant) vector as a little arrow
pointing in some direction, we shall instead define it as an object whose com-
ponents transform according to equation(3.5). This is just a fancy version
of equation(3.1), which is another way to define a vector as what happens
to the components upon rotation (instead of the definition of a vector as a
little arrow). Notice that we could have written down a diferential version
of (3.5) just from what we know about calculus. Using the infinitessimal dxi

(instead of xi) it follows immediately that

dxi =
∂xi

∂xj
dxj (3.6)

which is identical to (3.5) and therefore we must say that dxi forms an
ordinary or contravariant vector (or an infinitessimally tiny arrow).

While we are on the subject of calculus and infinitessimals let’s think
about ∂

∂xi
which is kind of like the ’inverse’ of dxi. From calculus if f =

f(x, y) and x = x(x, y) and y = y(x, y) (which is what (3.3) is saying) then

∂f

∂x
=
∂f

∂x

∂x

∂x
+
∂f

∂y

∂y

∂x
(3.7)

∂f

∂y
=
∂f

∂x

∂x

∂y
+
∂f

∂y

∂y

∂y

or simply
∂f

∂xi
=

∂f

∂xj
∂xj

∂xi
. (3.8)
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Let’s ’remove’ f and just write

∂

∂xi
=
∂xj

∂xi
∂

∂xj
. (3.9)

which we see is similar to (3.5), and so we might expect that ∂/∂xi are
the ’components’ of a ’non-ordinary’ vector. Notice that the index is in the
denominator, so instead of writing ∂/∂xi let’s just always write it as xi for
shorthand. Or equivalently define

xi ≡
∂

∂xi
(3.10)

Thus

xi =
∂xj

∂xi
xj . (3.11)

So now let’s define a contravariant vector Aµ as anything whose components
transform as (compare (3.5))

A
µ ≡ ∂xµ

∂xνA
ν

(3.12)

and a covariant vector Aµ (often also called a one-form, or dual vector or
covector)

Aµ = ∂xν

∂xµAν

(3.13)

In calculus we have two fundamental objects dxi and the dual vector ∂/∂xi.
If we try to form the dual dual vector ∂/∂(∂/∂xi) we get back dxi [2]. A
set of points in a smooth space is called a manifold and where dxi forms a
space, ∂/∂xi forms the corresponding ’dual’ space [2]. The dual of the dual
space is just the original space dxi. Contravariant and covariant vectors are
the dual of each other. Other examples of dual spaces are row and column

matrices (x y) and

(
x
y

)
and the kets < a| and bras |a > used in quantum

mechanics [3].
Before proceeding let’s emphasize again that our definitions of contravari-

ant and covariant vectors in (3.13) and (3.13) are nothing more than fancy
versions of (3.1).
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3.2 Higher Rank Tensors

Notice that our vector components Aµ have one index, whereas a scalar
(e.g. t = time or T = temperature) has zero indices. Thus scalars are called
tensors of rank zero and vectors are called tensors of rank one. We are
familiar with matrices which have two indices Aij . A contravariant tensor of
rank two is of the form Aµν , rank three Aµνγ etc. A mixed tensor, e.g. Aµν ,
is partly covariant and partly contravariant.

In order for an object to be called a tensor it must satisfy the tensor
transformation rules, examples of which are (3.13) and (3.13) and

T
µν = ∂xµ

∂xα
∂xν

∂xβ
Tαβ .

(3.14)

T
µ
ν =

∂xµ

∂xα
∂xβ

∂xν
Tαβ . (3.15)

T
µν
ρ =

∂xµ

∂xα
∂xν

∂xβ
∂xγ

∂xρ
Tαβγ . (3.16)

Thus even though a matrix has two indices Aij , it may not necessarily be
a second rank tensor unless it satisfies the above tensor tranformation rules
as well. However all second rank tensors can be written as matrices.

Higher rank tensors can be constructed from lower rank ones by forming
what is called the outer product or tensor product [14] as follows. For instance

Tαβ ≡ AαBβ (3.17)

or
Tαβγδ ≡ AαγB

β
δ . (3.18)

The tensor product is often written simply as

T = A⊗B (3.19)

(do Problem 3.1) (NNN Next time discuss wedge product - easy - just
introduce antisymmetry).

We can also construct lower rank tensors from higher rank ones by a
process called contraction, which sets a covariant and contravariant index
equal, and because of the Einstein summation convention equal or repeated
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indices are summed over. Thus contraction represents setting two indices
equal and summing. For example

Tαβγβ ≡ Tαγ (3.20)

Thus contraction over a pair of indices reduces the rank of a tensor by two
[14].

The inner product [14] of two tensors is defined by forming the outer
product and then contracting over a pair of indices as

Tαβ ≡ AαγBγ
β . (3.21)

Clearly the inner product of two vectors (rank one tensors) produces a scalar
(rank zero tensor) as

AµBµ = constant ≡ A.B (3.22)

and it can be shown that A.B as defined here is a scalar (do Problem 3.2).
A scalar is a tensor of rank zero with the very special transformation law of
invariance

c = c. (3.23)

It is easily shown, for example, that AµBµ is no good as a definition of inner
product for vectors because it is not invariant under transformations and
therefore is not a scalar.

3.3 Review of Cartesian Tensors

Let us review the scalar product that we used in freshman physics. We wrote
vectors as A = Aiêi and defined the scalar product as

A.B ≡ AB cos θ (3.24)

where A and B are the magnitudes of the vectors A and B and θ is the
angle between them. Thus

A.B = Aiêi.Bj êj

= (êi.êj)AiBj
≡ gijAiBj (3.25)
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where the metric tensor gij is defined as the dot product of the basis vectors.
A Cartesian basis is defined as one in which gij ≡ δij (obtained from

êi.êj = |êi||êj | cos θ = cos θ = δij). That is, the basis vectors are of unit
length and perpendicular to each other in which case

A.B = AiBi

= AxBx +AyBy + .... (3.26)

where the sum (+...) extends to however many dimensions are being consid-
ered and

A.A ≡ A2 = AiAi (3.27)

which is just Pythagoras’ theorem, A.A ≡ A2 = AiAi = A2
x +A2

y + .......
Notice that the usual results we learned about in freshman physics, equa-

tions (3.26) and (3.27), result entirely from requiring gij = δij =

(
1 0
0 1

)
in matrix notation.

We could easily have defined a non-Cartesian space, for example, gij =(
1 1
0 1

)
in which case Pythagoras’ theorem would change to

A.A ≡ A2 = AiAi = A2
x +A2

y +AxAy. (3.28)

Thus it is the metric tensor gij ≡ êi.êj given by the scalar product of the
unit vectors which (almost) completely defines the vector space that we are
considering. Now let’s return to vectors and one-forms (i.e. contravariant
and covariant vectors).

3.4 Metric Tensor

We have already seen (in Problem 3.2) that the inner product defined by
A.B ≡ AµB

µ transforms as a scalar. (The choice AµBµ won’t do because
it is not a scalar). However based on the previous section, we would expect
that A.B can also be written in terms of a metric tensor. The most natural
way to do this is

A.B ≡ AµBµ

= gµνA
νBµ (3.29)

assuming gµν is a tensor.
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In fact defining A.B ≡ AµBµ ≡ gµνAνBµ makes perfect sense because it
also transforms as a scalar (i.e. is invariant). (do Problem 3.3) Thus either
of the two right hand sides of (3.29) will do equally well as the definition of
the scalar product, and thus we deduce that

Aµ = gµνA
ν

(3.30)

so that the metric tensor has the effect of lowering indices. Similarly it can
raise indices

Aµ = gµνAν

(3.31)

How is vector A written in terms of basis vectors ? Based on our expe-
rience with Cartesian vectors let’s define our basis vectors such that

A.B ≡ AµBµ

= gµνA
νBµ

≡ (eµ.eν)AνBµ (3.32)

which imples that vectors can be written in terms of components and basis
vectors as

A = Aµeµ

= Aµe
µ (3.33)

Thus the basis vectors of a covariant vector (one-form) transform as con-
travariant vectors. Contravariant components have basis vectors that trans-
form as one-froms [5] (pg. 63-64).

The above results illuminate our flat (Cartesian) space results where
gµν ≡ δµν , so that (3.31) becomes Aµ = Aµ showing that in flat space there
is no distinction between covariant and contravariant vectors. Because of
this it also follows that A = Aµêµ and A.B = AµBµ which were our flat
space results.

Two more points to note are the symmetry

gµν = gνµ (3.34)
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and the inverse defined by

gµαg
αν = δνµ = gνµ (3.35)

so that gνµ is the Kronecker delta. This follows by getting back what we start
with as in Aµ = gµνA

ν = gµνg
ναAα ≡ δαµAα.

3.4.1 Special Relativity

Whereas the 3-dimensional Cartesian space is completely characterized by
gµν = δµν or

gµν =

 1 0 0
0 1 0
0 0 1

 (3.36)

Obviously for unit matrices there is no distinction between δνµ and δµν . The
4-dimensional spacetime of special relativity is specified by

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (3.37)

If a contravariant vector is specified by

Aµ = (A0, Ai) = (A0,A) (3.38)

it follows that the covariant vector is Aµ = ηµνA
ν or

Aµ = (A0, Ai) = (A0,−A) (3.39)

Note that A0 = A0.
Exercise: Prove equation (3.39) using (3.38) and (3.37).
Thus, for example, the energy momentum four vector pµ = (E,p) gives

p2 = E2 − p2. Of course p2 is the invariant we identify as m2 so that
E2 = p2 +m2.

Because of equation (3.38) we must have

∂µ ≡
∂

∂xµ
= (

∂

∂x0
,5) = (

∂

∂t
,5) (3.40)

implying that

∂µ ≡ ∂

∂xµ
= (

∂

∂x0
,−5) = (

∂

∂t
,−5) (3.41)
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Note that ∂0 = ∂0 = ∂
∂t (with c ≡ 1). We define

22 ≡ ∂µ∂µ = ∂0∂
0 + ∂i∂

i = ∂0∂0 − ∂i∂i

=
∂2

∂x02 −5
2 =

∂2

∂t2
−52 (3.42)

(Note that some authors [30] instead define 22 ≡ 52 − ∂2

∂t2
).

Let us now briefly discuss the fourvelocity uµ and proper time. We shall
write out c explicitly here.

Using dxµ ≡ (cdt, dx) the invariant interval is

ds2 ≡ dxµdxµ = c2dt2 − dx2. (3.43)

The proper time τ is defined via

ds ≡ cdτ =
cdt

γ
(3.44)

which is consistent with the time dilation effect as the proper time is the
time measured in an observer’s rest frame. The fourvelocity is defined as

uµ ≡ dxµ

dτ
≡ (γc, γv) (3.45)

such that the fourmomentum is

pµ ≡ muµ = (
E

c
,p) (3.46)

where m is the rest mass.
Exercise: Check that (muµ)2 = m2c2. (This must be true so that E2 =

(pc)2 + (mc2)2).

3.5 Christoffel Symbols

Some good references for this section are [7, 14, 8]. In electrodynamics in
flat spacetime we encounter

E = −~5φ (3.47)

and
B = ~5×A (3.48)
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where E and B are the electric and magnetic fields and φ and A are the scalar
and vectors potentials. ~5 is the gradient operator defined (in 3 dimensions)
as

~5 ≡ î∂/∂x+ ĵ∂/∂y + k̂∂/∂z

= ê1∂/∂x1 + ê2∂/∂x2 + ê3∂/∂x3. (3.49)

Clearly then φ and A are functions of x, y, z, i.e. φ = φ(x, y, z) and
A = A(x, y, z). Therefore φ is called a scalar field and A is called a vector
field. E and B are also vector fields because their values are a function of
position also. (The electric field of a point charge gets smaller when you
move away.) Because the left hand sides are vectors, (3.47) and (3.48) imply
that the derivatives ~5φ and ~5×A also transform as vectors. What about
the derivative of tensors in our general curved spacetime ? Do they also
transform as tensors ?

Consider a vector field Aµ(xν) as a function of contravariant coordinates.
Let us introduce a shorthand for the derivative as

Aµ,ν ≡
∂Aµ
∂xν

(3.50)

We want to know whether the derivative Aµ,ν is a tensor. That is does Aµ,ν
transform according to Aµ,ν = ∂xα

∂xµ
∂xβ

∂xνAα,β . ? To find out, let’s evaluate the
derivative explicitly

Aµ,ν ≡
∂Aµ
∂xν

=
∂

∂xν
(
∂xα

∂xµ
Aα)

=
∂xα

∂xµ
∂Aα
∂xν

+
∂2xα

∂xν∂xµ
Aα (3.51)

but Aα is a function of xν not xν , i.e. Aα = Aα(xν) 6= Aα(xν) . Therefore
we must insert ∂Aα

∂xν = ∂Aα
∂xγ

∂xγ

∂xν so that

Aµ,ν ≡
∂Aµ
∂xν

=
∂xα

∂xµ
∂xγ

∂xν
∂Aα
∂xγ

+
∂2xα

∂xν∂xµ
Aα

=
∂xα

∂xµ
∂xγ

∂xν
Aα,γ +

∂2xα

∂xν∂xµ
Aα (3.52)

We see therefore that the tensor transformation law for Aµ,ν is spoiled by
the second term. Thus Aµ,ν is not a tensor [8, 7, 14].
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To see why this problem occurs we should look at the definition of the
derivative [8],

Aµ,ν ≡
∂Aµ
∂xν

= lim
dx→0

Aµ(x+ dx)−Aµ(x)
dxν

(3.53)

or more properly [7, 14] as limdxγ→0
Aµ(xγ+dxγ)−Aµ(xγ)

dxν .
The problem however with (3.53) is that the numerator is not a vector

because Aµ(x+ dx) and Aµ(x) are located at different points. The differnce
between two vectors is only a vector if they are located at the same point.
The difference betweeen two vectors located at separate points is not a vector
because the transformations laws (3.12) and (3.13) depend on position. In
freshman physics when we represent two vectors A and B as little arrows,
the difference A − B is not even defined (i.e. is not a vector) if A and B
are at different points. We first instruct the freshman student to slide one
of the vectors to the other one and only then we can visualize the difference
between them. This sliding is achieved by moving one of the vectors parallel
to itself (called parallel transport), which is easy to do in flat space. Thus
to compare two vectors (i.e. compute A−B) we must first put them at the
same spacetime point.

Thus in order to calculate Aµ(x+ dx)−Aµ(x) we must first define what
is meant by parallel transport in a general curved space. When we parallel
transport a vector in flat space its components don’t change when we move
it around, but they do change in curved space. Imagine standing on the
curved surface of the Earth, say in Paris, holding a giant arrow (let’s call
this vector A) vertically upward. If you walk from Paris to Moscow and keep
the arrow pointed upward at all times (in other words transport the vector
parallel to itself), then an astronaut viewing the arrow from a stationary
position in space will notice that the arrow points in different directions in
Moscow compared to Paris, even though according to you, you have par-
allel transported the vector and it still points vertically upward from the
Earth. Thus the astronaut sees the arrow pointing in a different direction
and concludes that it is not the same vector. (It can’t be because it points
differently; it’s orientation has changed.) Thus parallel transport produces a
different vector. Vector A has changed into a different vector C.

To fix this situation, the astronaut communicates with you by radio and
views your arrow through her spacecraft window. She makes a little mark
on her window to line up with your arrow in Paris. She then draws a whole
series of parallel lines on her window and as you walk from Paris to Moscow
she keeps instructing you to keep your arrow parallel to the lines on her
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window. When you get to Moscow, she is satisfied that you haven’t rotated
your arrow compared to the markings on her window. If a vector is parallel
transported from an ’absolute’ point of view (the astronaut’s window), then
it must still be the same vector A, except now moved to a different point
(Moscow).

Let’s denote δAµ as the change produced in vector Aµ(xα) located at xα

by an infinitessimal parallel transport by a distance dxα. We expect δAµ to
be directly proportional to dxα.

δAµ ∝ dxα (3.54)

We also expect δAµ to be directly proportional to Aµ; the bigger our arrow,
the more noticeable its change will be. Thus

δAµ ∝ Aνdxα (3.55)

The only sensible constant of proportionality will have to have covariant µ
and α indices and a contravariant ν index as

δAµ ≡ ΓνµαAνdx
α (3.56)

where Γνµα are called Christoffel symbols or coefficients of affine connection
or simply connection coefficients . As Narlikar [7] points out, whereas the
metric tensor tells us how to define distance betweeen neighboring points, the
connection coefficients tell us how to define parallelism betweeen neighboring
points.

Equation (3.56) defines parallel transport. δAµ is the change produced
in vector Aµ by an infinitessimal transport by a distance dxα to produce a
new vector Cµ ≡ Aµ + δAµ. To obtain parallel transport for a contravariant
vector Bµ note that a scalar defined as AµBµ cannot change under parallel
transport. Thus [8]

δ(AµBµ) = 0 (3.57)

from which it follows that (do Problem 3.4)

δAµ ≡ −ΓµναA
νdxα. (3.58)

We shall also assume [8] symmetry under exchange of lower indices,

Γαµν = Γανµ. (3.59)

(We would have a truly crazy space if this wasn’t true [8]. Think about it !)
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Continuing with our consideration of Aµ(xα) parallel transported an in-
finitessimal distance dxα, the new vector Cµ will be

Cµ = Aµ + δAµ. (3.60)

whereas the old vector Aµ(xα) at the new position xα+dxα will be Aµ(xα+
dxα) . The difference betweeen them is

dAµ = Aµ(xα + dxα)− [Aµ(xα) + δAµ] (3.61)

which by construction is a vector. Thus we are led to a new definition of
derivative (which is a tensor [8])

Aµ;ν ≡
dAµ
dxν

= lim
dx→0

Aµ(x+ dx)− [Aµ(x) + δAµ]
dxν

(3.62)

Using (3.53) in (3.61) we have dAµ = ∂Aµ
∂xν dx

ν − δAµ = ∂Aµ
∂xν dx

ν − ΓεµαAεdx
α

and (3.62) becomes Aµ;ν ≡ dAµ
dxν = ∂Aµ

∂xν − ΓεµνAε (because dxα

dxν = δαν ) which
we shall henceforth write as

Aµ;ν ≡ Aµ,ν − ΓεµνAε

(3.63)

where Aµ,ν ≡ ∂Aµ
∂xν . The derivative Aµ;ν is often called the covariant deriva-

tive (with the word covariant not meaning the same as before) and one can
easily verify that Aµ;ν is a second rank tensor (which will be done later in
Problem 3.5). From (3.58)

Aµ;ν ≡ Aµ,ν + ΓµνεA
ε

(3.64)

For tensors of higher rank the results are, for example, [14, 8]

Aµν;λ ≡ A
µν
,λ + ΓµλεA

εν + ΓνλεA
µε
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(3.65)

and
Aµν;λ ≡ Aµν,λ − ΓεµλAεν − ΓενλAµε (3.66)

and
Aµν;λ ≡ A

µ
ν,λ + ΓµλεA

ε
ν − ΓενλA

µ
ε (3.67)

and

Aµναβ;λ ≡ A
µν
αβ,λ + ΓµλεA

εν
αβ + ΓνλεA

µε
αβ − ΓεαλA

µν
εβ − ΓεβλA

µν
αε . (3.68)

3.6 Christoffel Symbols and Metric Tensor

We shall now derive an important formula which gives the Christoffel symbol
in terms of the metric tensor and its derivatives [8, 14, 7]. The formula is

Γαβγ = 1
2g
αε(gεβ,γ + gεγ,β − gβγ,ε).

(3.69)

Another result we wish to prove is that

Γεµε = (ln
√−g),µ = 1

2 [ln(−g)],µ

(3.70)

where
g ≡ determinant|gµν |. (3.71)

Note that g 6= |gµν |. Let us now prove these results.
Proof of Equation (3.69). The process of covariant differentiation should

never change the length of a vector. To ensure this means that the covariant
derivative of the metric tensor should always be identically zero,

gµν;λ ≡ 0. (3.72)

Applying (3.66)

gµν;λ ≡ gµν,λ − Γεµλgεν − Γενλgµε ≡ 0 (3.73)
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Thus
gµν,λ = Γεµλgεν + Γενλgµε (3.74)

and permuting the µνλ indices cyclically gives

gλµ,ν = Γελνgεµ + Γεµνgλε (3.75)

and
gνλ,µ = Γενµgελ + Γελµgνε (3.76)

Now add (3.75) and (3.76) and subtract (3.74) gives [8]

gλµ,ν + gνλ,µ − gµν,λ = 2Γεµνgλε (3.77)

because of the symmetries of (3.59) and (3.34). Multiplying (3.77) by gλα

and using (3.34) and (3.35) (to give gλεgλα = gελg
λα = δαε ) yields

Γαµν =
1
2
gλα(gλµ,ν + gνλ,µ − gµν,λ). (3.78)

which gives (3.69). (do Problems 3.5 and 3.6).
Proof of equation (3.70) [14] (Appendix II) Using gαεgεβ,α = gαεgβα,ε

(obtained using the symmetry of the metric tensor and swapping the names
of indices) and contracting over αν, equation (3.69) becomes (first and last
terms cancel)

Γαβ,α =
1
2
gαε(gεβ,α + gεα,β − gβα,ε).

=
1
2
gαεgεα,β (3.79)

Defining g as the determinant |gµν | and using (3.35) it follows that

∂g

∂gµν
= ggµν (3.80)

a result which can be easily checked. (do Problem 3.7) Thus (3.79) be-
comes

Γαβ,α =
1
2g

∂g

∂gλα

∂gλα
∂xβ

=
1
2g

∂g

∂xβ

=
1
2
∂ ln g
∂xβ

(3.81)

which is (3.70), where in (3.70) we write ln(−g) instead of ln g because g is
always negative.
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3.7 Riemann Curvature Tensor

The Riemann curvature tensor is one of the most important tensors in gen-
eral relativity. If it is zero then it means that the space is flat. If it is
non-zero then we have a curved space. This tensor is most easily derived
by considering the order of double differentiation on tensors [28, 2, 9, 7, 8].
Firstly we write in general

Aµ,αβ ≡
∂2Aµ

∂xα∂xβ
(3.82)

and also when we write Aµ;αβ we again mean second derivative. Many authors
instead write Aµ,αβ ≡ A

µ
,α,β or Aµ;αβ ≡ A

µ
;α;β . We shall use either notation.

In general it turns out that even though Aµ,αβ = Aµ,βα, however in general
it is true that Aµ;αβ 6= Aµ;βα. Let us examine this in more detail. Firstly
consider the second derivative of a scalar φ. A scalar does not change under
parallel transport therefore φ;µ = φ,µ. From (3.63) we have (φ;µ is a tensor,
not a scalar)

φ;µ;ν = φ,µ;ν = φ,µ,ν − Γεµνφ,ε (3.83)

but because Γεµν = Γενµ it follows that φ;µν = φ;νµ meaning that the order
of differentiation does not matter for a scalar. Consider now a vector. Let’s
differentiate equation (3.64). Note that Aµ;ν is a second rank tensor, so we
use (3.67) as follows

Aµ;ν;λ = Aµ;ν,λ + ΓµλεA
ε
;ν − ΓενλA

µ
;ε

=
∂

∂xλ
(Aµ;ν) + ΓµλεA

ε
;ν − ΓενλA

µ
;ε

= Aµ,ν,λ + Γµνε,λA
ε + ΓµνεA

ε
,λ + ΓµλεA

ε
;ν − ΓενλA

µ
;ε (3.84)

Now interchange the order of differentiation (just swap the ν and λ indices)

Aµ;λ;ν = Aµ,λ,ν + Γµλε,νA
ε + ΓµλεA

ε
,ν + ΓµνεA

ε
;λ − ΓελνA

µ
;ε (3.85)

Subtracting we have

Aµ;ν;λ −A
µ
;λ;ν = Aε(Γµνε,λ − Γµλε,ν + ΓµλθΓ

θ
νε − ΓµνθΓ

θ
λε)

≡ AεRµλεν (3.86)

with the famous Riemann curvature tensor defined as
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Rαβγδ ≡ −Γαβγ,δ + Γαβδ,γ + ΓαεγΓεβδ − ΓαεδΓ
ε
βγ

(3.87)

Exercise: Check that equations (3.86) and (3.87) are consistent.
The Riemann tensor tells us everything essential about the curvature of

a space. For a Cartesian spcae the Riemann tensor is zero.
The Riemann tensor has the following useful symmetry properties [9]

Rαβγδ = −Rαβδγ (3.88)

Rαβγδ +Rαγδβ +Rαδβγ = 0 (3.89)

and
Rαβγδ = −Rβαγδ (3.90)

All other symmetry properties of the Riemann tensor may be obtained from
these. For example

Rαβγδ = Rγδαβ (3.91)

Finally we introduce the Ricci tensor [9] by contracting on a pair of indices

Rαβ ≡ Rεαεβ (3.92)

which has the property
Rαβ = Rβα (3.93)

(It will turn out later that Rαβ = 0 for empty space [9] ). Note that the
contraction of the Riemann tensor is unique up to a sign, i.e. we could have
defined Rεεαβ or Rεαεβ or Rεαβε as the Ricci tensor and we would have the
same result except that maybe a sign differnce would appear. Thus different
books may have this sign difference.

However all authors agree on the definition of the Riemann scalar (ob-
tained by contracting Rαβ)

R ≡ Rαα ≡ gαβRαβ (3.94)

Finally the Einstein tensor is defined as

Gµν ≡ Rµν −
1
2
Rgµν (3.95)

After discussing the stress-energy tensor in the next chapter, we shall put
all of this tensor machinery to use in our discussion of general relativity
following.

3.8 Summary
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3.9 Problems

3.1 If Aµ and Bν are tensors, show that the tensor product (outer product)
defined by Tµν ≡ AµBν is also a tensor.

3.2 Show that the inner product A.B ≡ AµBµ is invariant under transfor-
mations, i.e. show that it satisfies the tensor transformation law of a scalar
(thus it is often called the scalar product).

3.3 Show that the inner product defined by A.B ≡ gµνAµBν is also a scalar
(invariant under transformations), where gµν is assumed to be a tensor.

3.4 Prove equation (3.58).

3.5 Derive the transformation rule for Γαβγ . Is Γαβγ a tensor ?

3.6 Show that Aµ;ν is a second rank tensor.

3.7 Check that ∂g
∂gµν

= ggµν . (Equation (3.80)).
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3.10 Answers

no answers; only solutions
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3.11 Solutions

3.1

To prove that Tµν is a tensor we must show that it satisfies the
tensor transformation law T

µ
ν = ∂xµ

∂xα
∂xβ

∂xν T
α
β .

Proof Tµν = A
µ
Bν = ∂xµ

∂xαA
α ∂xβ

∂xνBβ

= ∂xµ

∂xα
∂xβ

∂xνA
αBβ

= ∂xµ

∂xα
∂xβ

∂xν T
α
β

QED.

3.2

First let’s recall that if f = f(θ, α) and θ = θ(x, y) and α =
α(x, y) then ∂f

∂θ = ∂f
∂x

∂x
∂θ + ∂f

∂y
∂y
∂θ = ∂f

∂xi
∂xi

∂θ .

Now

A.B = A
µ
Bµ = ∂xµ

∂xαA
α ∂xβ

∂xµBβ

= ∂xµ

∂xα
∂xβ

∂xµA
αBβ

= ∂xβ

∂xαA
αBβ by the chain rule

= δβαA
αBβ

= AαBα

= A.B
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3.3

A.B ≡ gµνA
µ
B
ν

= ∂xα

∂xµ
∂xβ

∂xν gαβ
∂xµ

∂xγ
∂xν

∂xδ
AγBδ

= ∂xα

∂xµ
∂xβ

∂xν
∂xµ

∂xγ
∂xν

∂xδ
gαβA

γBδ

= ∂xα

∂xγ
∂xβ

∂xδ
gαβA

γBδ

= δαγ δ
β
δ gαβA

γBδ

= gαβA
αBβ

= AαBα

= A.B

3.4

3.5

3.6

3.7
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Chapter 4

ENERGY-MOMENTUM
TENSOR

It is important to emphasize that our discussion in this chapter is based
entirely on Special Relativity.

4.1 Euler-Lagrange and Hamilton’s Equations

Newton’s second law of motion is

F =
dp
dt

(4.1)

or in component form (for each component Fi)

Fi =
dpi
dt

(4.2)

where pi = mq̇i (with qi being the generalized position coordinate) so that
dpi
dt = ṁq̇i + mq̈i. If ṁ = 0 then Fi = mq̈i = mai. For conservative forces
F = −5V where V is the scalar potential. Rewriting Newton’s law we have

−dV
dqi

=
d

dt
(mq̇i) (4.3)

Let us define the Lagrangian L(qi, q̇i) ≡ T −V where T is the kinetic energy.
In freshman physics T = T (q̇i) = 1

2mq̇
2
i and V = V (qi) such as the harmonic

oscillator V (qi) = 1
2kq

2
i . That is in freshman physics T is a function only

of velocity q̇i and V is a function only of position qi. Thus L(qi, q̇i) =

45
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T (q̇i) − V (qi). It follows that ∂L
∂qi

= −dV
dqi

and ∂L
∂q̇i

= dT
dq̇i

= mq̇i = pi. Thus
Newton’s law is

Fi =
dpi
dt

∂L

∂qi
=

d

dt
(
∂L

∂q̇i
) (4.4)

with the canonical momentum [1] defined as

pi ≡
∂L

∂q̇i
(4.5)

The second equation of (4.4) is known as the Euler-Lagrange equations of
motion and serves as an alternative formulation of mechanics [1]. It is usually
written

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= 0 (4.6)

or just

ṗi =
∂L

∂qi
(4.7)

We have obtained the Euler-Lagrange equations using simple arguments. A
more rigorous derivation is based on the calculus of variations [1] as discussed
in Section 7.3.

We now introduce the Hamiltonian H defined as a function of p and q as

H(pi, qi) ≡ piq̇i − L(qi, q̇i) (4.8)

For the simple case T = 1
2mq̇

2
i and V 6= V (q̇i) we have pi ∂L∂q̇i = mq̇i so that

T = p2
i

2m and piq̇i = p2
i
m so that H(pi, qi) = p2

i
2m + V (qi) = T + V which is the

total energy. Hamilton’s equations of motion immediately follow from (4.8)
as

∂H

∂pi
= q̇i (4.9)

because L 6= L(pi) and ∂H
∂qi

= − ∂L
∂qi

so that from (4.4)

−∂H
∂qi

= ṗi. (4.10)



4.2. CLASSICAL FIELD THEORY 47

4.2 Classical Field Theory

Scalar fields are important in cosmology as they are thought to drive infla-
tion. Such a field is called an inflaton, an example of which may be the Higgs
boson. Thus the field φ considered below can be thoguht of as an inflaton,
a Higgs boson or any other scalar boson.

In both special and general relativity we always seek covariant equations
in which space and time are given equal status. The Euler-Lagrange equa-
tions (4.6) are clearly not covariant because special emphasis is placed on
time via the q̇i and d

dt(
∂L
∂q̇i

) terms.
Let us replace the qi by a field φ ≡ φ(x) where x ≡ (t,x). The generalized

coordiante q has been replaced by the field variable φ and the discrete index
i has been replaced by a continuously varying index x. In the next section
we shall show how to derive the Euler-Lagrange equations from the action
defined as

S ≡
∫
Ldt (4.11)

which again is clearly not covariant. A covariant form of the action would
involve a Lagrangian density L via

S ≡
∫
Ld4x =

∫
Ld3xdt (4.12)

with L ≡
∫
Ld3x. The term − ∂L

∂qi
in equation (4.6) gets replaced by the

covariant term − ∂L
∂φ(x) . Any time derivative d

dt should be replaced with

∂µ ≡ ∂
∂xµ which contains space as well as time derivatives. Thus one can

guess that the covariant generalization of the point particle Euler-Lagrange
equations (4.6) is

∂µ
∂L

∂(∂µφ)
− ∂L
∂φ

= 0 (4.13)

which is the covariant Euler-Lagrange equation for scalar fields. This will
be derived rigorously in the next section.

In analogy with the canonical momentum in equation (4.5) we define the
covariant momentum density

Πµ ≡ ∂L
∂(∂µφ)

(4.14)

so that the Euler-Lagrange equations become

∂µΠµ =
∂L
∂φ

(4.15)
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The canonical momentum is defined as

Π ≡ Π0 =
∂L
∂φ̇

(4.16)

The energy momentum tensor is (analagous to (4.8))

Tµν ≡ Πµ∂νφ− gµνL (4.17)

with the Hamiltonian density

H ≡
∫
Hd3x

H ≡ T00 = Πφ̇− L (4.18)

4.2.1 Classical Klein-Gordon Field

In order to illustrate the foregoing theory we shall use the example of the
classical, massive Klein-Gordon field defined with the Lagrangian density
(HL units ??)

LKG =
1
2

(∂µφ∂µφ−m2φ2)

=
1
2

[φ̇2 − (5φ)2 −m2φ2] (4.19)

The covariant momentum density is more easily evaluated by re-writing
LKG = 1

2g
µν(∂µφ∂νφ −m2φ2). Thus Πµ = ∂L

∂(∂µφ) = 1
2g
µν(δαµ∂νφ + ∂µφδ

α
ν )

= 1
2(δαµ∂

µφ + ∂νφδαν ) = 1
2(∂αφ + ∂αφ) = ∂αφ. Thus for the Klein-Gordon

field we have
Πα = ∂αφ (4.20)

giving the canonical momentum Π = Π0 = ∂0φ = ∂0φ = φ̇,

Π = φ̇ (4.21)

Evaluating ∂L
∂φ = −m2φ, the Euler-Lagrange equations give the field equation

as ∂µ∂µφ+m2φ or

(22 +m2)φ = 0
φ̈−52φ+m2φ = 0 (4.22)
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which is the Klein-Gordon equation for a free, massive scalar field. In mo-
mentum space p2 = −22, thus

(p2 −m2)φ = 0 (4.23)

(Note that some authors [30] define 22 ≡ 52 − ∂2

∂t2
different from (3.42), so

that they write the Klein-Gordon equation as (22−m2)φ = 0 or (p2+m2)φ =
0.)

The energy momentum tensor is

Tµν ≡ Πµ∂νφ− gµνL
= ∂µφ∂νφ− gµνL

= ∂µφ∂νφ−
1
2
gµν(∂αφ∂αφ−m2φ2). (4.24)

Therefore the Hamiltonian density is H ≡ T00 = φ̇2 − 1
2(∂αφ∂αφ − m2φ2)

which becomes [31]

H =
1
2
φ̇2 +

1
2

(5φ)2 +
1
2
m2φ2

=
1
2

[Π2 + (5φ)2 +m2φ2] (4.25)

where we have relied upon the results of Section 3.4.1.

4.3 Principle of Least Action

derive EL eqns properly for q and φ (do later). Leave out for now.

4.4 Energy-Momentum Tensor for Perfect Fluid

The best references for this section are [9](Pg. 124-125), [7], and [32](Pg.
155). The book by D’Inverno [32] also has a nice discussion of the Navier-
Stokes equation and its relation to the material of this section. Other ref-
erences are [8](Pg. 83), [15](Pg. 330), [33](Pg. 259), [34](Pg. 38), and
[2].

These references show that the energy-momentum tensor for a perfect
fluid is
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Tµν = (ρ+ p)uµuν − pηµν

(4.26)

where ρ is the energy density and p is the pressure. We shall now work this
out for several specific cases [9]. Fig. 2.5 of Narlikar’s book [7] is particularly
helpful.

Motionless dust represents a collection of particles at rest. Thus uµ =
(c,0), so that T 00 = ρ. The equation of state for dust is p = 0 so that
T ii = 0 = T 0i = T ij . Thus

Tµν =


ρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (4.27)

Motionless fluid representes a collection of particles all moving randomly
(such that they exert a pressure) but the whole collection is at rest, such
as a gas of particles at non-zero temperature, but confined in a motionless
container. In this case uµ = (c,0) again, but now p 6= 0. Thus again T 00 = ρ
but now T ii = p and T ij = 0 so that

Tµν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (4.28)

Motionless radiation is characterized by the equation of state p = 1
3ρ.

Again the radiation is confined to a container not in motion so that uµ =
(γc,0). (The 1

3 just comes from randomizing the pressure in 3 dimensions
[7].) Thus

Tµν =
4
3
ρuµuν − 1

3
ρηµν

=


ρ 0 0 0
0 1

3ρ 0 0
0 0 1

3ρ 0
0 0 0 1

3ρ

 (4.29)

Thus the general case is the motionless fluid energy-momentum tensor
in equation (4.28). The special cases of motionless dust or motionless radi-
ation are obtained with the respective substitutions of p = 0 or p = 1

3ρ in
equation (4.28).
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4.5 Continuity Equation

In classical electrodynamics the fourcurrent density is jµ ≡ (cρ, j) and the
covariant conservation law is ∂µj

µ = 0 which results in the equation of
continuity ∂ρ

∂t + 5.j = 0. This can also be obtained from the Maxwell
equations by taking the divergence of Ampère’s law. (do Problems 4.1
and 4.2) Thus the four Maxwell equations are entirely equivalent to only
three Maxwell equations plus the equation of continuity.

We had a similar situation in Chapters 1 and 2 where we found that the
velocity and acceleration equations imply the conservation equation. Thus
the two velocity and acceleration equations are entirely equivalent to only
the velocity equation plus the conservation law.

In analogy with electrodynamics the conservation law for the energy-
momentum tensor is

Tµν;ν = 0 (4.30)

In the next chapter we shall show how equation (2.1) can be derived from
this.

4.6 Interacting Scalar Field

We represent the interaction of a scalar field with a scalar potential V (φ).
Recall our elementary results for L = T − V = 1

2mq̇
2
i − V (qi) for the coordi-

nates q̇i. These discrete coordinates q̇i have now been replaced by continuous
field variables φ(x) where φ has replaced the generalized coordinate q and
the discrete index i has been replaced by a continuous index x. Thus V (qi)
naturally gets replaced with V (φ) where φ ≡ φ(x).

Thus for an interacting scalar field we simply tack on −V (φ) to the free
Klein-Gordon Lagrangian of equation (4.19) to give

L =
1
2

(∂µφ∂µφ−m2φ2)− V (φ)

≡ LO + LI (4.31)

where LO ≡ LKG and LI ≡ −V (φ). Actually the Lagrangian of (4.31)
refers to a minimally coupled scalar field as opposed to conformally coupled
[21] (Pg. 276). It is important to emphasize that V (φ) does not contain
derivative terms such as ∂µφ. Thus the covariant momentum density and
canonical momentum remain the same as equations (4.20) and (4.21) for the
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free particle case namely Πα = ∂αφ and π = φ̇. Solving the Euler-Lagrange
equations now gives

(22 +m2)φ+ V ′ = 0
φ̈−52φ+m2φ+ V ′ = 0 (4.32)

with

V ′ ≡ dV

dφ
(4.33)

The energy-momentum tensor is the same as for the free particle case,
equation (4.24), except for the addition of gµνV (φ) as in

Tµν = ∂µφ∂νφ− gµν [
1
2

(∂αφ∂αφ−m2φ2)− V (φ)] (4.34)

yielding the Hamiltonian density the same as for the free particle case, equa-
tion (4.25), except for the addition of V (φ) as in

H ≡ T00 =
1
2
φ̇2 +

1
2

(5φ)2 +
1
2
m2φ2 + V (φ)

=
1
2

[Π2 + (5φ)2 +m2φ2] + V (φ). (4.35)

The purely spatial components are Tii = ∂iφ∂iφ−gii[1
2(∂αφ∂αφ−m2φ2)−

V (φ)] and with gii = −1 (i.e. assume Special Relativity NNN) we obtain

Tii =
1
2
φ̇2 +

1
2

(5φ)2 − 1
2
m2φ2 − V (φ) (4.36)

Note that even though Tii has repeated indices let us not assume
∑
i is

implied in this case. That is Tii refers to Tii = T11 = T22 = T33 and not
Tii = T11 + T22 + T33. Some authors (e.g Serot and Walecka [34]) do assume
the latter convention and therefore will disagree with our results by 1

3 .
Let us assume that the effects of the scalar field are averaged so as

to behave like a perfect (motionless) fluid. In that case, comparing equa-
tion (4.28), we make the identification [13, 34]

E ≡ ρ ≡< T00 > (4.37)

and
p ≡< Tii > (4.38)
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where E ≡ ρ is the energy density and p is the pressure. (Note that because
Serot and Walecka do assume the Einstein summation convention for Tii,
they actually write p ≡ 1

3 < Tii >.) Making these identifications we have

ρ =
1
2
φ̇2 +

1
2

(5φ)2 +
1
2
m2φ2 + V (φ) (4.39)

and

p =
1
2
φ̇2 +

1
2

(5φ)2 − 1
2
m2φ2 − V (φ) (4.40)

Let us also assume that the scalar field is massless and that φ = φ(t)
only, i.e. φ 6= φ(x), so that spatial derivatives disappear. (See Pg. 276-277
of Kolb and Turner [21] and Pg. 138 of Islam [13]). Therefore we finally
obtain [13, 21].

ρ = 1
2 φ̇

2 + V (φ)

(4.41)

and

p = 1
2 φ̇

2 − V (φ)

(4.42)

4.7 Cosmology with the Scalar Field

We have finished with our discussion of the energy-momentum tensor and
therefore we should now move onto the next chapter. However, with the
tools at hand (energy-momentum tensor and Friedmann equations) we can
discuss the relevance of the scalar field to cosmology without needing the
formalism of General Relativity. Therefore before proceeding to the next
chapter we shall make a brief digression and discuss the evolution of the
scalar field.

If one is considering cosmological evolution driven by a scalar field, one
can simply substitute the above expressions for ρ and p into the Friedmann
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and acceleration equations (1.29) and (1.30) to obtain the time evolution of
the scale factor as in

H2 ≡ (
Ṙ

R
)2 =

8πG
3

[
1
2
φ̇2 +

1
2

(5φ)2 +
1
2
m2φ2 + V (φ)]− k

R2
+

Λ
3

(4.43)

and
R̈

R
= −4πG

3
[
1
2
φ̇2 +

1
2

(5φ)2 − 1
2
m2φ2 − V (φ)] +

Λ
3

(4.44)

The equation for the time evolution of the scalar field is obtained either by
taking the time derivative of equation (4.43) or more simply by substituting
the expression for ρ and p in equations (4.41) and (4.42) into the conservation
equation (2.1) to give

φ̈+ 3H[φ̇+
(5φ)2

φ̇
] +m2φ+ V ′ = 0. (4.45)

Note that this is a new Klein-Gordon equation quite different to equation (4.32).
The difference occurs because we have now incorporated gravity via the
Friedmann and conservation equation. We shall derive this equation again
in Chapter 7.

Again assuming the field is massless and ignoring spatial derivatives we
have

φ̈+ 3Hφ̇+ V ′ = 0

(4.46)

Notice that this is the equation for a damped harmonic oscillator (V = 1
2kx

2

and dV
dx ≡ V ′ = kx with F = −V ′) as

mẍ+ dẋ+ kx = 0 (4.47)

Kolb and Turner [21] actually also include a particle creation term due to
the decay of the scalar field, which will cause reheating, and instead write

φ̈+ 3Hφ̇+ Γφ̇+ V ′ = 0 (4.48)
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4.7.1 Alternative derivation

We can derive the equation of motion (4.46) for the scalar field in a quicker
manner [29] (Pg. 73), but this derivation only seems to work if we set m = 0
and 5φ = 0 at the beginning. (Exercise: find out what goes wrong if m 6= 0
and 5φ 6= 0.)

Consider a Lagrangian for φ which already has the scale factor built into
it as

L = R3[
1
2

(∂µφ∂µφ−m2φ2)− V (φ)] (4.49)

The R3 factor comes from
√−g = R3 for a Robertson-Walker metric. This

will be discussed in Chapter 7. Notice that it is the same factor which
sits outside the Friedmann Lagrangian in equation (2.20). The equation of
motion is (do Problem 4.3)

φ̈−52φ+ 3Hφ̇+m2φ+ V ′ = 0 (4.50)

which is different to (4.45). (NNNN why ???) However if m = 0 and5φ = 0
it is the same as (4.46).

Let’s only consider

L = R3[
1
2
φ̇2 − V (φ)] (4.51)

which results from setting m = 0 and 5φ = 0 in (4.49). The equation of
motion is

φ̈+ 3Hφ̇+ V ′ = 0 (4.52)

Notice how quickly we obtained this result rather than the long procedure
to get (4.46). We didn’t even use the energy-momentum tensor. Also realize
that because5φ = 0 the above Lagrangian formalism is really no different to
our old fashioned formalism where we had qi(t). Here we have only φ = φ(t)
(not φ = φ(x)), and so we only have i = 1, i.e. qi ≡ φ.

Identifying the Lagrangian as [29] L = R3(T − V ) we immediately write
down the total energy density ρ = T + V = 1

2 φ̇
2 + V (φ). Taking the time

derivative ρ̇ = φ̇φ̈ + V ′φ̇ = −3Hφ̇2 from (4.46) and substituting into the
conservation equation (2.1), ρ̇ = −3H(ρ + p) we obtain the pressure as
p = 1

2 φ̇
2 − V (φ). Thus our energy density and pressure derived here agree

with our results above (4.39) and (4.40). Notice that the pressure is nothing
more than p = L

R3 . [29].
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4.7.2 Limiting solutions

Assuming that k = Λ = 0 the Friedmann equation becomes

H2 ≡ (
Ṙ

R
)2 =

8πG
3

(
1
2
φ̇+ V ) (4.53)

This equation together with equation (4.46) form a set of coupled equations
where solutions give φ(t) and R(t). We solve the coupled equations in the
standard way by first eliminating one variable, then solving one equation,
then substituting the solution back into the other equation to solve for the
other variable. Let’s write equation (4.46) purely in terms of φ by eliminating
R which appears in the form H = Ṙ

R . We eliminate R by substituting H
from (4.53) into (4.46) to give

φ̈+
√

12πG(φ̇2 + 2V )φ̇+V’=0

φ̈2 + 2φ̈V ′ − 12πG(φ̇2 + 2V )φ̇2 + V ′2 = 0 (4.54)

Notice that this is a non-linear differential equation for φ, which is difficult
to solve in general. In this section we shall study the solutions for certain
limiting cases. Once φ(t) is obtained from (4.54) it is put back into (4.53)
to get R(t).

Potential Energy=0

Setting V = 0 we then have ρ = 1
2 φ̇

2 = p. Thus our equation of state is

p = ρ (4.55)

or γ = 3.
With V = V ′ = 0 we have

φ̈2 +
√

12πGφ̇2 = 0 (4.56)

which has the solution (do problem 4.4)

φ(t) = φo +
1√

12πG
ln[1 +

√
12πGφ̇(t− to)] (4.57)
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(Note that the solution is equation (9.18) of [29] is wrong.) Upon substitut-
ing this solution back into the Friedmann equation (4.53) and solving the
differential equation we obtain (do problem 4.5)

R(t) = Ro[1 +
√

12πGφ̇o(t− to)]1/3. (4.58)

This result may be understood from another point of view. Writing the
Friedmann equations as

H2 ≡ (
Ṙ

R
)2 =

8πG
3

ρ (4.59)

and
ρ =

α

Rm
(4.60)

then the solution is always
R∝t2/m (4.61)

which always gives

ρ ∝ 1
t2
. (4.62)

If
ρ = constant (4.63)

(corresponding to m = 0) then the solution is

R∝et (4.64)

(do problem 4.6). Note that for m < 2, one obtains power law inflation.
For ordinary matter (m = 3), or radiation (m = 4) we have R ∝ t2/3 and
R ∝ t1/2 respectively. Returning to the scalar field solution (4.57) the density
is ρ = 1

2 φ̇
2 for V = 0. Thus

φ̇(t) =
φ̇o

1 +
√

12πGφ̇o(t− to)
(4.65)

combined with ( RRo )3 = 1 +
√

12πGφ̇o(t− to) from (4.58) yields

φ̇(t) =
φ̇oR

3
o

R3
(4.66)

to give the density
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ρ = 1
2
φ̇2
oR

6
o

R6

(4.67)

corresponding to m = 6 and thus R ∝ t1/3 in agreement with (4.58). Note
also that this density ρ ∝ 1

R6 also gives ρ ∝ 1
t2

.
Thus for a scalar field with V = 0, we have p = ρ (γ = 3) and ρ ∝ 1

R6 .
Contrast this with matter for which p = 0(γ = 0) and ρ ∝ 1

R3 or radiation
for which p = 1

3ρ (γ = 1/3) and ρ ∝ 1
R4 .

However equation (4.67) may not be interpreted as a decaying Cosmo-
logical Constant because p 6= ρ (see later).

Kinetic Energy=0
Here we take φ̇ = φ̈ = 0, so that ρ = V and p = −V giving

p = −ρ (4.68)

or γ = −3 which is a negative pressure equation of state. Our equation of
motion for the scalar field (4.54) becomes

V ′ = 0 (4.69)

meaning that
V = Vo (4.70)

which is constant. Substituting the solution into the Friedmann equation
(4.53) gives

H2 = (
Ṙ

R
)2 =

8πG
3

Vo (4.71)

which acts as a Cosmological Constant and which has the solution (do prob-
lem 4.7)

R(t) = Roe
√

8πG
3
Vo(t−to) (4.72)

which is an inflationary solution, valid for any V .

Warning

We have found that if k = Λ = 0 and if ρ ∝ 1
Rm then R∝t2 for any

value of m. All of this is correct. To check this we might substitute into the
Friedmann equation as

H2 = (
Ṙ

R
)2 ∝ 1

t2
(4.73)
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and say Ṙ
R ∝ 1

t giving
∫ 1
R
dR
dt dt ∝

∫ dt
t which yields lnR ∝ lnt and thus

R ∝ t2/m. The result R ∝t is wrong because we have left out an important
constant.

Actually if Ṙ
R = c

t then lnR = c ln t = ln tc giving R ∝ tc instead of R∝t.
Let’s keep our constants then. Write ρ = d2

Rm then R = (md2 )2/mt2/m

and ρ = d2

(md
2

)2t2
= (2/m)2

t2
. Substituting into the Friedmann equation gives

( ṘR)2 = (2/m)2

t2
or Ṙ

R = (2/m)
t with the above constant C = 2

m yielding
R ∝t2/m in agreement with the correct result above.

The lesson is be careful of constants when doing back-of-the-envelope
calculations.

4.7.3 Exactly Solvable Model of Inflation

Because (4.54) is a difficult non-linear equation, exactly solvable models are
very rare. We shall examine the model of Barrow [35] which can be solved
exactly and leads to power law inflation. The advantage of an exactly solv-
able model is that one can develop ones physical intuition better. Barrow’s
model [35] is briefly introduced by Islam [13].

Any scalar field model is specified by writing down the potential V (φ).
Barrow’s potential is

V (φ) ≡ βe−λφ (4.74)

where β and λ are constants to be determined. Barrow [35] claims that a
particular solution to (4.54) is (which was presumably guessed at, rather
then solving the differential equation)

φ(t) =
√

2Alnt (4.75)

where
√

2A is just some constant. We check this claim by substituting (4.74)
and (4.75) into (4.54). From this we find (do problem 4.9) that

λ =
√

2
A

(4.76)

and
β = −A (4.77)

or
β = A(24πGA− 1) (4.78)
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Note that Barrow is wrong when he writes λA =
√

2. Also he uses units
with 8πG = 1, so that the second solution (4.78), he writes correctly as
β = A(3A− 1). Also Barrow doesn’t use the first solution (4.77) for reasons
we shall see shortly.

Having solved for φ(t) we now substitute into (4.53) to solve for R(t).
(Recall φ(t) and R(t) are the solutions we seek to our coupled equations
(4.46) and (4.53).) Substituting V = Λ

t2
and φ̇ =

√
2A
t (see solution to

problem 4.9) we have

H2 ≡ (
Ṙ

R
)2 =

8πG
3

(
1
2

2A
t2

+
β

t2
) =

8πG
3

(A+ β)
1
t2

(4.79)

giving an equivalent density

ρ =
A+ β

t2
(4.80)

Clearly we see why we reject the first solution (4.77) with β = −A. It would
give zero density. Using the second solution (4.78) with β = A(24πGA− 1)
yields

ρ =
24πGA2

t2
. (4.81)

Solving the Friedmann equation (4.79) gives

R∝t8πGA (4.82)

where D is some constant. Setting 8πG ≡ 1 we have

R∝tA (4.83)

in agreement with Barrow’s solution. Power law inflation results for

A > 1. (4.84)

Inverting the solution (4.83) we have t2 = C ′R2/A where C ′ is some constant.
Substituting into (4.81) we have

ρ ∝ 1
R2/A

(4.85)

which corresponds to a Weak decaying Cosmological Constant. (See sections
4.7.4 and 4.7.5) For the inflationary result A > 1 we have 2

A ≡ m < 2 which
corresponds to the quantum tunneling solution!!

Note of course that (4.85) can also be obtained via ρ = 1
3 φ̇

2+V. We have
V= β

t2
∝ 1

R2/A and φ̇ =
√

2A
t giving φ̇2 ∝ 1

R2/A .
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4.7.4 Variable Cosmological Constant

In this section we address the question as to when the density can be inter-
preted as a Cosmological Constant. Recall the Friedmann equations

H2 ≡ (
Ṙ

R
)2 =

8πG
3

ρ− k

R2
+

Λ
3

(4.86)

and

R̈

R
= −4πG

3
(ρ+ 3p) +

Λ
3

= −4πG
3

ρ(1 + γ) +
Λ
3

(4.87)

for p = γ
3ρ. Suppose ρ = k = 0, then we have

H2 = (
Ṙ

R
)2 =

Λ
3

(4.88)

and
R̈

R
=

Λ
3

(4.89)

where two things have happened. Firstly the velocity and acceleration equa-
tions both have the same right hand side. Secondly the acceleration is posi-
tive. What sort of density would give the same result. Again for k = 0

H2 = (
Ṙ

R
)2 =

8πG
3

ρ (4.90)

and
R̈

R
=

8πG
3

ρ (4.91)

only for γ = −3 or p = −ρ. From our conservation equation, ρ̇ = −3H(ρ+p),
this can only happen for ρ=constant. Thus constant density with equation
of state p = −ρ acts identically to a Cosmological Constant. In addition
the solution is automatically are of exponential inflation, R ∝ eHt. (Ex-
ercise:verify this.) Let us define a Strong Cosmological Constant as one in
which the velocity and acceleration equations both have the same right hand
side, (which automatically implies that the acceleration is positive). Such a
Strong Cosmological Constant must be a true constant.
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On the other hand we can imagine densities that still give a positive
acceleration (i.e. inflation) but do not normally give the velocity and accel-
eration with the same right hand side. Examining (4.54) indicates that the
acceleration is guarenteed to be positive if γ < −1 giving p < −1

3ρ. (Recall
that the exponential inflation above required γ = −3, which is consistent
with the inequality.) Thus negative pressure gives inflation. (Although not
all negative pressure gives inflation, e.g. p = −1

4ρ.) The inflation due to
γ < −1 will not be exponential inflation, but something weaker like per-

haps power law inflation. Let us define a Weak Cosmological Constant as
one which arises from negative pressure (actually p < −1

3ρ) to give a positive
acceleration (inflation) only. The velocity and acceleration equations need
not have the same right hand side.

Recall that ordinary matter and radiation, or any positive pressure equa-
tion of state, neccesarily leads to negative acceleration (with Λ = 0). Thus
positive pressure leads to attractive gravity. However positive acceleration
implies a repulsive gravity or antigravity. Thus negative pressure (actually
p < −1

3ρ) leads to antigravity. This is why we wish to use the term weak Cos-
mological Constant (even though right hand sides are not the same) because
it is consonant with antigravity.

Let us summarize. We consider ρ alone with Λ ≡ 0. For

R̈ > 0⇒ γ < −1 and ρ =anything (e.g. ρ = ρ(R) or ρ =constant)
R̈ > 0 and ρ =constant⇒ γ = −3

For γ < −1, ρ behaves as a weak Cosmological Constant and for γ = −3,
ρ behaves as a Strong Cosmological Constant.

Finally let us emphasize that it is perfectly legitimate to consider a Weak
Cosmological Constant as a real Cosmological Constant. Einstein’s original
motivation in introducing Λ was to obtain a static universe. Thus all he
wanted was a antigravity term; i.e. all he wanted was a weak Cosmological
Constant. It “accidentally” happened that the right hand sides turned out
to be equal, giving a strong Λ.

Interpreting ρ as a Cosmological Constant leads us to expect that a
weak Cosmological Constant can vary. This follows from ρ=anything above.
i.e. ρ=constant or ρ = ρ(R) giving a variable function. (But a strong
Cosmological Constant cannot vary).
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4.7.5 Cosmological constant and Scalar Fields

Refer back to the density and pressure of the scalar field in equations (4.41))
and (4.42). We had

ρ =
1
2
φ̇2 + V (φ)

and

ρ =
1
2
φ̇2 − V (φ).

For the case where PE = V = 0 we have p = ρ. The pressure is positive
and therefore equation (4.67), ρ ∝ 1

R6 , cannot be interpreted as a (variable)
Cosmological Constant.

For the case where KE = 1
2 φ̇

2 = 0 we have p = −ρ meaning that ρ can
be interpreted as a Strong Cosmological Constant. (We found V ′ = 0 and
thus ρ = V = constant = Vo and p = −Vo.)

These results are true in general (assuming m = ∇φ = 0) as we have not
yet specified V (φ).

Let us now consider the Barrow model V (φ) = βe−λφ. we found that
φ(t) = 2

λ ln t and β = 2
λ2 ( 6

λ2 − 1) for 8πG ≡ 1. Introducing A ≡ 2
λ we can

re-write as β = A(3A − 1) and φ(t) =
√

2A ln t and V (φ) = A(3A − 1)eφ
2
A .

Substituting we obtain

ρBarrow =
3A2

t2
(4.92)

and

ρBarrow =
3A2

t2
(
2A
3
− 1) = (

2A
3
− 1)ρ (4.93)

the general equation of state is p = γ
3ρ giving the Barrow equation of state

γBarrow =
2
A
− 3 (4.94)

in equation (4.84) we concluded that power law inflation results for A > 1.
Substituting this into (4.94) implies

γBarrow < −3 (4.95)

which we expect because power law inflation implies R̈ > 0. thus for A > 1
the Barrow pressure is negative with γ < −1 and thus ρBarrow = 3A2

t2
cor-

responds to a Weak Cosmological Constant. Furthermore this Cosmological
Constant is variable and decays with time. in equation (4.85) we wrote this
as ρBarrow ∝ 1

R2/A .
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4.7.6 Clarification

We wish to clarify the distinction between a Strong Cosmological Constant,
a Weak Cosmological Constant and a Varying Cosmological Constant. A
Strong Cosmological Constant occurs when the Friedmann equation are of
the form

H2 ≡ (
Ṙ

R
)2 =

Λ
3

(4.96)

and

−qH2 ≡ R̈

R
=

Λ
3

(4.97)

and comparing with

(
Ṙ

R
)2 =

8πG
3

ρ (4.98)

R̈

R
= −8πG

3
(ρ+ 3p) (4.99)

leads us to conclude that the equation of state for a Strong Cosmological
Constant is p = −ρ, where we have identified Λ ≡ 8πGρv. The conservation
equation

ρ̇ = −3H(ρ+ p) (4.100)

leads us to conclude that Λ ≡ 8πGρv=constant for a Strong Cosmological
Constant.

A Variable Cosmological Constant Λ(R), can also be considered but the
equation cannot be like (4.96) and (4.97) with no ρ term. As we shall see be-
low a Varying Cosmological Constant automatically involves matter creation
(existence of a ρ term). Thus Λ(R) cannot be written down in the Friedmann
equation without also writing ρ. Thus for a Varying Cosmological Constant
(let k = 0) we have

H2 ≡ (
Ṙ

R
)2 =

8πG
3

ρ+
Λ(R)

3
(4.101)

and

−qH2 ≡ R̈

R
= −4πG

3
(1 + γ)ρ+

Λ
3

(4.102)

One can easily show that the conservation equation becomes

ρ̇+ ρ̇v =-3H(ρ+p) =−H(3+γ)ρ
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(4.103)

(do Problem 4.10). Other ways of writing this are (see equations 2.1-2.7
).

d(ρR3)
dt

+ p
dR3

dt
+R3ρ̇v = 0 (4.104)

d(ρR3+γ)
dt

+R3+γ ρ̇v = 0 (4.105)

ρ′ + ρ′v = − 3
R

(ρ+ p) (4.106)

d(ρR3)
dR

+ 3pR2 +R3ρ′v = 0 (4.107)

1
R3+γ

d(ρR3+γ)
dR

= −ρ′v (4.108)

The last equation show clearly that if ρv 6= 0 (i.e. ρv 6= constant) then
matter or radiation is created or destroyed. This is why we cannot write
(4.96) and (4.97) if Λ is allowed to vary. We must include particle creation
terms as in (??) and (4.102).

For a Variable Cosmological Constant the same term Λ(R)
3 appears in

both right hand sides of the Friedmann equation (4.101) and (4.102). How-
ever we don’t know its equation of state. Also γ can be anything and thus
ρ̇v can lead to creation of matter, radiation or anything else. Further Λ(R)
can vary.

Both a Strong and Weak Cosmological Constant have well defined equa-
tion of state, both with (different) negative pressure. A Weak Cosmological
Constant can vary but the right hand sides of the Friedmann equations differ.

Thus we see that we have 3 different types of Cosmological Constant
namely, Strong, Weak, and Variable, each with both similar and dissimiliar
properties. These are summarize in the Table.

4.7.7 Generic Inflation and Slow-Roll Approximation

We shall first discuss features that are common to many models of inflation
based on scalar fields [21]. These models typically have a large region of the
potential where the potential is flat (slow-roll region) and then a harmonic



66 CHAPTER 4. ENERGY-MOMENTUM TENSOR

Weak Strong Variable
Right Hand Sides
of Velocity and Different same Same (but must include ρ)

Acceleration Eqns.

Eqn. State p < −1
3ρ p = −ρ Unknown

Λ = 8πGρv Variable Constant Variable

Table 4.1: Properties of 3 types of Cosmological Constants

region where the potential looks similar to an oscillatior (rapid oscillation
region). Such a potential is shown in Fig 4.1.

Let us first analyze this situation from a simple physics point of view. If
Fig 4.1 were actually a plot of V (x) versus x the equation of motion would
be

mẍ+ bẋ+ V ′ = 0 (4.109)

which, for V = 1
2kx

2 or V ′ = kx would represent a damped harmonic oscil-
lator, which indeed is the case in the rapid oscillation region. In the slow
roll regime we have V ≈constant or V = Vo − Cx where C is small, giving
V ′ = −C. The physical situation would represent a ball rolling down a hill
with friction into a valley [21].

In the slow roll regime friction dominates and the ball moves at terminal
velocity [21], ẋ=constant and ẋ doesn’t change much so that ẍ = 0. This is
the slow roll regime we have

bẋ+ V ′ = 0 (4.110)

and for V = Vo − Cx we have
bẋ≈C (4.111)

When the ball finally reaches the valley we are back to the full equation
(4.109) where V ′ ≡ kx so that the ball experiences rapid, damped oscilla-
tions.

Let’s return to the scalar field equations which are (for Λ = k = 0)

H2 ≡ (
Ṙ

R
)2 =

8πG
3

(
1
2
φ̇+ V ) (4.112)
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and
φ̈+ 3Hφ̇+ V ′ = 0 (4.113)

where the friction term 3H is due to the expansion of the universe [21]. Based
on analogy with the rolling ball, the slow roll approximation (φ̇ ≈constant,
φ̈ ≈ 0) is

3Hφ̇+ V ′ ≈ 0 (4.114)

In addition, the slow roll region is characterized by a small kinetic energy
1
2 φ̇

2 << V , so that

H2 ≈ 8πG
3

Vo ≈ constant (4.115)

For the rolling ball we only had one equation, but here we have two equations
(4.114) and (4.115) involved in the slow roll approximations. The slow roll
equation can also be obtained directly from equation (4.54) where we set
φ̇2 << 2Vo and φ̈ ≈ 0 to give√

24πGVoφ̇+ V ′ = 0 (4.116)

which is consistent with combining (4.114) and (4.115). Normally we would
have the formula for V(φ) and solve (4.116) or (4.54) first for φ(t) and then
substitute our answer into the Friedmann equation to obtain R(t). However
we have not yet specified V (φ). We have specified that we are in a slow roll
regime thus making (4.115) valid which we can solve directly for R(t) giving
an exponential inflationary solution

R(t)≈Roet
√

8πG
3
VO (4.117)

Thus, no matter what V (φ) is, the slow regime always give approximately
exponential inflation.

To obtain φ(t) we must specify V (φ) even in the slow-roll regime.

4.7.8 Chaotic Inflation in Slow-Roll Approximation

The Chaotic inflation model is defined by the potential

V (φ) =
1
2
m2φ2 (4.118)

which is exactly analogous to the harmonic oscillator potential V (x) = 1
2kx

2.
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Using Vo = 1
2m

2φ2
o the slow roll solution (4.117) becomes

R(t) = Roe
t
√

4π
3

√
Gmφ

= Roe
t
√

4π
3

m
Mp

φ (4.119)

where G ≡ 1
M2
p

is in agreement with equation (9.23) of Madsen [29]. Having
specified V (φ) in (4.118) we can solve (4.116), which

φ̇ = − 1√
24πG

V ′√
Vo

(4.120)

or
φ̇

φ
= − m√

12πG
1
φo

(4.121)

This gives

φ(t) = φoe
− m

φo
√

12πG
t

= φoe
− mMp

φo
√

12π
t

= φo −
mMp√

12π
t (4.122)

is the slow roll region in agreement with equation (9.25) of Madsen [29]. For
m << Mp or for short times we see that φ(t) will be approximately constant,
or slowing rolling. We see that φ(t) is a decaying exponential in time. Thus
there will be a “half-life” or “lifetime” associated with slow roll which we
define as

τ =
φo
√

12π
mMp

(4.123)

When t = τ we see that φ = φo
1
e . That is the amplitude is reduced by the

factor 1
e We expect that the slow roll approximation will be valid for t < τ .

Our solution of φ(t) in (4.122) came from solving (4.116). We can also
obtain φ(t) slightly differently. Let’s not assume V = Vo=constant, but only
that φ̇2 << 2V and φ̈ ≈ 0. Then instead of (4.116) we have

√
24πGV φ̇+ V ′ = 0 (4.124)

which, for chaotic inflation becomes
√

12πGmφφ̇+m2φ = 0 (4.125)
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or
φ̇ = − m√

12πG
(4.126)

which has the solution

φ(t) = φo −
m√

12πG
t

= φo −
mMp√

12π
t (4.127)

in agreement with (4.122) for short time.
We can further investigate the validity of the slow roll approximation by

evaluating the potential as a function of time and checking that it is constant
for short times. We do this by substituting our solution for φ(t) back into
the potential. We get

V =
1
2
m2φ2 =

1
2
m2φ2

oe
− mMp

φo
√

3π
t

≈ 1
2
m2φo(φo −

mMp√
3π

t) (4.128)

Thus we see that for m << Mp or for short times the potential is indeed
constant.

For short times (or for m << Mp) we have verified that φ and V are
approximately constant. This means that φ̇ ≈ 0 and ρ ≈ Vo which give
exponential inflation. (Also p ≈ −Vo, so that p = −ρ).

In order to solve the horizon, flatness and monopole problems, most
models require a high degree of inflation typically amounting to about 60
e-folds [21]. Given R(t) = Roe

Ht, the number of e-folds after time t is

N = ln(
R(t)
Ro

) = Ht. (4.129)

(Actually a better formula is given in equation (8.26) of the book by Kolb
and Turner [21] (pg.278)). After one lifetime τ , the number of e-folds is

N = Hτ =
√

4π
3
m

Mp
φo
φo
√

12π
mMp

= 4π
φ2
o

M2
p

(4.130)

where H =
√

4π
3

m
Mp
φo taken from (4.119) and τ is from (4.123). Thus the

requirement N ≥ 60 yields

N ≥ 60 ⇒ φo ≥
√

5Mp. (4.131)
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Notice how the flatness problem is solved in inflation. We have H2 ≡ ( ṘR)2 =
8πG

3 ρ− k
R2 ≈ 8πG

3 Vo − k
R2 . During inflation (slow roll) Vo stays constant but

by the end of inflation R = Roe
60 or 1

R2 = 1
R2
o
e−120. The term k

R2 has

dropped by e−120, whereas Vo has remained constant. Thus the term k
R2 is

entirely negligible. Inflation does not give k = 0, but rather gives k
R2 ≈ 0

which is equivalent to k = 0. This is an improtant distinction. The universe
can have k = 0 or k = +1 or k = −1. No matter what the value of k, it gets
diluted by inflation and is equivalent to a universe with k = 0. thus within
our horizon the universe is flat. Quantum cosmology predict that a universe
which arises via tunnelling must have k = +1. This is perfectly OK with
inflation which simply dilutes the curvature.

Quantum tunnelling requires k = +1. Inflation actually says nothing
about the value of k. It simply predicts that k

R2 ≈ 0 at the end of inflation.
On Earth, the reason many people believe the Earth is flat is because

we cannot see beyond the horizon. Up to the horizon it looks flat. If we
could see beyond the horizon we would see the curvature. Similarly for our
universe. According to inflation the size of the universe is much larger then
the distance to the horizon ( i.e. as far as we can see) the universe looks
flat becuase k

R2 is negligible. If we could see beyond the horizon we would
see the curvature. And quantum tunnelling predicts that what we would see
would be a universe of positive curvature.

Cosmological Constant associated with Chaotic Inflation
Let us now calculate the density as a function of R. We solve (4.119) for

t = t(R) as

t =
√

3
4π

Mp

mφo
ln(

R

Ro
). (4.132)

Substituting into (4.122) we have

φ(R) = φo(
Ro
R

)
M2
p

4πφ2
o (4.133)

and with V (φ) = 1
2m

2φ2 we have

V (R) =
1
2
m2φ2

o(
Ro
R

)
M2
p

2πφ2
o . (4.134)

Also from (4.122)

φ̇(t) = −mMp√
12π

e
− mMp

φo
√

12π t (4.135)
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so that

φ̇(R) = −mMp√
12π

(
Ro
R

)
M2
p

4πφ2
o . (4.136)

Finally evaluating ρ = 1
2 φ̇

2 + V we have

ρ(R) =
1
2
m2(

M2
p

12π
+ φ2

o)(
Ro
R

)
M2
p

2πφ2
o . (4.137)

Thus

ρ(R) ∝ 1
Rm

where m ≡
M2
p

2πφ2
o

. (4.138)

Recall previously that an inflationary solution requires m < 2, yielding

φo >
Mp√

4π
= 0.3 Mp (4.139)

which is entirely consistent with (4.131)!
What is the equation of state? using p = 1

2 φ̇
2 − V we obtain

p =
1
2
m2(

M2
p

12π
− φ2

o)(
Ro
R

)
M2
p

2πφ2
o . (4.140)

The question is, is the pressure negative? We find that for inflation to occur
we need φo >

Mp√
4π

. Write this as

φo = `
Mp√

4π
with ` > 1 (4.141)

Thus the density becomes

ρ(R) =
m2M2

p

8π
(
1
3

+ `2)(
Ro
R

)m (4.142)

and

p(R) =
m2M2

p

8π
(
1
3
− `2)(

Ro
R

)m (4.143)

Defining κ ≡ m2M2
p

8π (RoR )m, we write ρ = (1
3 + `2)κ and p = (1

3 − `2)κ, giving
p = 1−3`2

1+3`2
ρ. The requirement ` > 1 yields

p < −1
2
ρ (4.144)
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which means negative pressure! Writing p = γ
3ρ gives

γ = −3
2
. (4.145)

These results are in agreement with our previous constraints that in order
to have positive R̈ (inflation) we needed p < 1

3ρ or γ < −1.
Our chaotic inflation model is the slow roll approximation gives negative

pressure (but not p = −ρ) and corresponds to a Weak Decaying Cosmological
Constant!

4.7.9 Density Fluctuations

An important result that we shall use without proof is that fluctuations of
the scalar field are given approximately by

δφ ≈ H
2π

(4.146)

this result is discussed by Linde [36] (Pg.17,50), Kolb and Turner [21](Pg.284),
Collins, Martin and Squires [37] (Pg.410) and by Dolgov, Sazhin and Zel-
dovich [38].

Using ρ = 1
2 φ̇

2+V(φ) we have dρ
dφ = V ′(φ) or

δρ = V ′δφ≈V ′ H
2π

(4.147)

which, upon assuming φ̇ = 0, gives

δρ

ρ
=

√
2

3π
GV ′2

V
=
√

2
3π

V ′

Mp

√
V

(4.148)

where we have used G ≡ 1
M2
p

. For the chaotic inflation model, V = 1
2m

2φ2

this yields
δρ

ρ
=
√

4
3π

m

Mp
. (4.149)

This is an intensely important formula often written as

δρ

ρ
≈m
√
G =

m

Mp
(4.150)
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the density fluctuations observed by COBE are δρ
ρ ≈ 10−5 yielding m =

10−5Mp.
The above formula is not very useful for the Barrow model where a well

defined inflation means m ≡ minflation is not present. In that case the
formula is written more usefully as [?, ?, ?]

δρ

ρ
=
ρinflation

ρp
(4.151)

4.7.10 Equation of State for Variable Cosmological Constant

In this section we wish to demonstrate that Variable Cosmological Constant
models have negative pressure [?, ?, ?].

Firstly if one assumes
p ≡ γ

3
ρ (4.152)

then the conservation law follows as

1
R3+γ

d

dR
(ρR3+γ) = −ρ′v. (4.153)

Let’s assume that
ρv ≡

α

Rm
= ρvo(

Ro
R

)m. (4.154)

Integrating the conservation law we have

ρ =
A

R3+γ
+ χρv (4.155)

where
χ ≡ m

3 + γ −m (4.156)

and A is a constant give by

A = (ρo − χρvo)R3+γ
o . (4.157)

The pressure is

p =
γ

3
A

R3+γ
+
γ

3
m

3 + γ −mρv (4.158)

This looks like bad news. Assuming that ρv dominate over the first term
at some stage of evolution, it looks like the pressure only get negative for
m> 3 + γ. However, there are two things to keep in mind. Firstly, the
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pressure p is not the pressure of radiation or matter or vacuum because
ρ = A

R3+γ +χρ, and p = γ
3ρ. The pressure that we would want to be negative

would be the vacuum pressure pv, which we shall work out below. Secondly,
the key point is not as much having p negative but rather having R̈ positive.
The equation

−qH2 ≡ R̈

R
= −4πG

3
(ρ+ 3p) +

8πG
3

ρv (4.159)

can still give postive R̈ even if p is not negative, because the ρv term has to
be considered. The Friedmann equation is

H2 ≡ (
Ṙ

R
)2 =

8πG
3

(ρ+ ρv)−
k

R2
(4.160)

Let us evaluate the right hand sides of these two equations (4.159) and
(4.160).

From (4.155) we have

H2 ≡ (
Ṙ

R
)2 =

8πG
3

[
A

R3+γ
+ (χ+ 1)ρv]−

k

R2
(4.161)

where

χ+ 1 =
3 + γ

3 + γ −m. (4.162)

Also assuming p= γ
3ρ we have

−qH2 ≡ R̈

R
= −4πG

3
(1 + γ)(

A

R3+γ
+ χρv) +

8πG
3

ρv (4.163)

= −4πG
3

[1 + γ)
A

R3+γ
+

(3 + γ)(m− 2)
3 + γ −m ρv]. (4.164)

Define

θ ≡ (3 + γ)(m− 2)
3 + γ −m (4.165)

we see that θ is always negative for m < 2! Thus if the vacuum term domi-
nates equation (4.164) then R̈ will be positive for m < 2. This agrees with
our previous consideration that if ρ = α

Rm dominates the velocity equation
then m < 2 leads to inflation.

Note however that θ can be negative for other values of m as shown in
Table 4.2.
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m θ(γ = 0) θ(γ = 1)
0.5 -1.8 -1.7
1 -1.5 -1.3

1.5 -1.0 -0.8
2 0 0

2.5 3.0 1.33
3 ∞ 4
4 -6 ∞
5 -4.5 -12
6 -4 -8

Table 4.2: θ as a function of γ and m

Having established that a decaying Cosmological Constant can lead to
negative pressure, let us now work out the vacuum equation of state for a
decaying Cosmological Constant. Looking at (4.161) let us define

ρ̃ ≡ A

R3+γ
(4.166)

and
ρ̃v ≡ (χ+ 1)ρv =

3 + γ

3 + γ −mρv (4.167)

so that
ρ+ ρv = ρ̃+ ρ̃v (4.168)

giving

H2 ≡ (
Ṙ

R
)2 =

8πG
3

(ρ+ ρv)−
k

R2
=

8πG
3

(ρ̃+ ρ̃v)−
k

R2
(4.169)

and from (4.164) we have

−qH2 ≡ R̈

R
= −4πG

3
[(1 + γ)ρ− 2ρv] (4.170)

= −4πG
3

[(1 + γ)ρ̃+ (m− 2)ρ̃v] (4.171)

which we would like to write as

−qH2 ≡ R̈

R
= −4πG

3
(ρ̃+ 3p̃)− 4πG

3
(ρ̃v + 3p̃v). (4.172)

This is achieved if we make the following defintions
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p̃ ≡ γ
3 ρ̃

(4.173)

and

p̃v ≡ m−3
3 ρ̃v ≡ γv

3 ρ̃v ,

(4.174)

which is our vacuum equation of state for a decaying Cosmological Constant.
We see that for m< 3 we have p̃v and γv negative. For a m < 2 we have
γv < −1 which we saw previously is the condition for inflation assuming
vacuum domination of the density and pressure.

It is also satisfying to note that the equation of state for the non-vacuum
component (equation 4.173) is identical to the equation of state for a perfect
fluid that we encountered for models without a Cosmological Constant.

Alternative Derivation
Our definition of ρ̃ and ρ̃v above are not unique. We present alternative

definitions below which will give the same vacuum equation of state but
different for the non-vacuum component.

In equation (4.161) the density is

ρ+ ρv =
A

R3+γ
+ (χ+ 1)ρv

= (ρo − χρvo)(
Ro
R

)3+γ + (χ+ 1)ρvo(
Ro
R

)m

= ρo(
Ro
R

)3+γ + ρvo[(χ+ 1)(
Ro
R

)m − χ(
Ro
R

)3+γ ] (4.175)

We previoulsy defined ρ̃ ≡ A
R3+γ and ρ̃v ≡ (χ + 1)ρv. However we might

alternatively define

ρ̄ ≡ ρo(
Ro
R

)3+γ (4.176)

and

ρ̄v ≡ ρvo[(χ+ 1)(
Ro
R

)m − χ(
Ro
R

3+γ

]

= (χ+ 1)ρv − χ
ρvo
ρo
ρ̄ (4.177)
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still obtaining
ρ+ ρv = ρ̃+ ρ̃v = ρ̄+ ρ̄v. (4.178)

Assuming p = γ
3ρ we have (compare to equation 4.171)

−qH2 ≡ R̈

R
= −4πG

3
[(1 + γ)ρ− 2ρv]

= −4πG
3

[(1 + γ −mρvo
ρo

)ρ̄+ (m− 2)ρ̄v] (4.179)

(where we have used the second expression in 4.177), which we would like
to write as

−qH2 ≡ R̈

R
= −4πG

3
(ρ̄+ 3p̄)− 4πG

3
(ρ̄v + 3p̄v). (4.180)

This is achieved if we make the following definitions

p̄ ≡ γ−m ρvo
ρo

3 ρ̄ ≡ Γ
3 ρ̄

(4.181)

and

p̄v ≡ m−3
3 ρ̄v = γv

3 ρ̄v

(4.182)

4.7.11 Quantization

All of our proceeding work with the scalar field was at the classical level. In
this section we wish to consider quantum effects.

In section (2.4.2) we dervied the wheeler-DeWitt equation in minisuper-
space approximation. We began with the Lagrangian in equation (2.20)

L = −κR3[(
Ṙ

R
)2 − k

R2
+

8πG
3

(ρ+ ρv)] (4.183)

and identified the conjugate momentum p ≡ ∂L
∂Ṙ

= −2κṘR and derived the
Wheeler-DeWitt equation, after quantizing with p→ i ∂∂R , as

{− ∂2

∂R2
+ 4κ2[kR2 − 8πG

3
(ρ+ ρv)R4]}ψ = 0. (4.184)
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Notice that our quantization ’didn’t do anything to the density.”
In the work that we have done in the present chapter we have made

an effort to write the scalar field as a function of R, i.e. φ = φ(R) and
using ρ = 1

2 φ̇
2 + V (φ) we have written as an effective density ρ(R) for

the scalar field. Our intention has been to simply insert this ρ(R) into
the Wheeler-DeWitt equation (4.184). In our work on inflation we found
that for ρ ∝ 1

Rm dominating the Friedmann equation then inflation occurs
for m < 2. If this density also dominates ρ + ρv in the Wheeler-DeWitt
equation, then a tunnelling potential will only be present for m < 2. Thus
inflation and quantum tunnelling require the same condition. This leads us
to the hypothesis that inflation and quantum tunnelling are identical! Or in
other words, inflation is simply a classical description of quantum tunnelling.
We call this hypothesis Quantum Inflation.

Quantum inflation is easy to validate for ordinary densities, either ρ or
ρv, that behave like ρ ∝ 1

Rm . With our discussion of the scalar field we have
written ρφ ∝ 1

Rm so it would seem that the idea of quantum inflation also
works for scalar fields.

In our quantization procedure we ”didn’t do anything to the density.” In
terms of scalar fields then this quantization procedure is different to what
other people do with quantization. The usual procedure [?, ?, ?, 20, 21] is
to quantize φ and R seperately and arrive at a Wheeler- DeWitt equation
in terms of both of these variables. Let us now study this procedure.

We begin with the Lagrangian

L = −κR3[(
Ṙ

R
)2 − k

R2
] + 2π2R3[

1
2
φ̇2 − V (φ)] (4.185)

where κ ≡ 3π
4G .

From this one can deduce that

(
Ṙ

R
)2 =

8πG
3

(
1
2
φ̇2 + V )− k

R2
(4.186)

and also
φ̈+ 3Hφ̇+ V ′ = 0 (4.187)

provided one uses R̈
R = −4πG

3 (ρ + 3p) with ρ = 1
2 φ̇

2 + V and p = 1
2 φ̇

2 − V .
(NNN see FE)

The canonical momenta are

ΠR ≡
∂L

∂Ṙ
= −2κRṘ (4.188)
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and
Πφ ≡

∂L

∂φ̇
= 2π2R3φ̇. (4.189)

The Hamiltonian (H = piq̇i − L) becomes (using κ = 3π
4G)

H = ΠRṘ+ Πφφ̇− L (4.190)

= −κR3[(
Ṙ

R
)2 +

k

R2
− 8πG

3
(
1
2
φ̇2 + V )] ≡ 0 (4.191)

where the result H = 0 is obtained by comparing the expression for the
Hamiltonian to the Friedmann equation (4.186). This Hamiltonian is exactly
analogous to the Hamiltonian we had in equation (2.22) where we had ρ
instead of 1

2 φ̇
2 + V .

Writing H in terms of the conjugate momenta we have

H = −κR3[
Π2
R

4κ2R4
+

d

R2
− 8πG

3
(

Π2
φ

8π4R6
+ V )] = 0 (4.192)

which, of course is also equal to zero. This Hamiltonian is inherited to
equation (11.34), Pg.462 of the book by Kolb and Turner [21]. This equation
is re-arranged as

Π2
R −

3
4πG

2
R2

Π2
φ +

9π2

4G2
(kR2 − 8πG

3
V R4) = 0. (4.193)

In order to compare to our signal Wheeler-DeWitt equation let’s replace Πφ

with Πφ = 2π2R3φ̇, which results in

Π2
R +

9π2

4G2
[kR2 − 8πG

3
(
1
2
φ̇2 + V )R4] = 0 (4.194)

which is exactly analogous to our original Wheeler-DeWitt equation (2.24)
where we had ρ instead of 1

2 φ̇
2 + V .

Equation (4.193) is quantized by making the replacements

ΠR → −i
∂

∂R
(4.195)

and
Πφ → −i

∂

∂φ
(4.196)

and setting Hψ = 0 to give
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[− ∂2

∂R2 + 3
4πG

1
R2

∂2

∂φ2 + 9π2

4G2 (kR2 − 8πG
3 VR4)]ψ = 0

(4.197)

which is the Wheeler-DeWitt equation in minisuperspace approximation for
a quantized scalar field φ. This is identical to equation (10.1.11), Pg.270 of
the book by Linde [36].

We identify the potential as

U(R,φ) = 9π2

4G2 (kR2 − 8πG
3 V R4)

(4.198)

which is identical to equation (11.35), Pg.463 of the book by Kolb and Turner
[21]. In equation (10.1.25), Pg277 of the book by Linde [36], he gives an
expression for V (R,φ) = 3π

G V (a), so that our result does agree with Linde.
We can see that the above method of quantizing the scalar field φ directly

is still consistent with our idea of Quantum Inflation. Recall that ρ(R)
and V (R) in terms of φ(R) obvioulsy ρ, V and φ̇2 must have the same R
dependence. Thus if ρ ∝ 1

Rm then also V ∝ 1
Rm in the same way. Thus our

potential U(R,φ) will alsways exhibit a tunnelling shape for m < 2. Thus
Quantum Inflation still works for U(R,φ) when φ is quantized seperately.

4.8 Problems

4.1 Show that ∂µjµ = 0 is the equation of continuity ∂ρ
∂t +∇ · j = 0 where

jµ ≡ (ρ, j).

4.2 Show that the above equation of continuity also results from taking the
divergence of Ampèrés law.

4.3 Show that the Lagrangian in equation (4.49) yields the equation of mo-
tion (4.50).

4.4 A) Solve the differential equation (4.56). B) Check your answer by
substituting your solution back into the equation.

4.5 Now put your solution from problem 4.4 into the Friedmann equation
(4.53) and solve for R(t).
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4.6 A) If ( ṘR)2 ∝ 1
Rm , show that R ∝ t2/m. B) If H2 ≡ ( ṘR)2 = constant

show that R ∝ eHt.

4.7 If ( ṘR)2 = 8πG
3 Vo, show that R = Roe

√
8πG

3
Vo(t−to).

4.8 Show that inflationary solutions are characterized by R̈ > 0 and non-
inflationary expansions by R̈ < 0

4.9 Barrow’s model is V (φ) ≡ βe−λφ. Check that φ(t) =
√

2A ln t is a
soluttion and evaluate the constants β and λ in terms of A.

4.10 Prove equations (4.103)-(4.108).
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Chapter 5

EINSTEIN FIELD
EQUATIONS

The Einstein’s field equations are

Gµν = 8πGTµν + Λgµν (5.1)

which are a set of 16 coupled equations which will give gµν (buried inside
Gµν) gives Tµν . Actually there are only 10 independent equations because
of the symmetry gµν = gνµ.

In principle our job is easy. Just write down Tµν and solve for gµν which
specifies the metric. Then we can calculate the paths of light rays, the orbits
of planets, etc. In practice the solution of the Einstein field equations are
exceedingly difficult and only a few exact solutions are known.

Two excellent reference for this section are Chapter 7 of the book by
Lawden [?] and Chapter 2 of the book by Islam [13].

In actual practice, the way one usually solves the Einstein’s equations
is to specify a metric in general terms which contains unknown coefficients.
This metric is substituted into the Einstein equations and one solves for the
unknown coefficients.

Thus we need to learn how to derive the metric for the spaces un-
der consideration. Let us learn how to derive the Friedmann-Robertson-
Walker (FRW) metric which is the metric appropriate to a homogeneous
and isotropic universe but where size can change with time.

83
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5.1 Preview of Riemannian Geometry

5.1.1 Polar Coordinate

A general N-dimensional Riemannian space, denoted by RN , is one in which
the distance ds between two neighboring points can be written (Pg. 88 [?])

ds2 = gµνdx
µdxν . (5.2)

If coordinates can be found such that

ds2 = dxµdxν (5.3)

over the whole space then the space is said to be Euclidean and is denoted
by EN . Clearly EN is a special case of RN .

Below we shall restrict our discussion to the spatial part of the metric
denoted as

d`2 = hijdx
idxj . (5.4)

We shall very often have (eg. FRW and special relativity metrics)

ds2 = c2dt2 − d`2 (5.5)

so that
hij = −gij . (5.6)

Consider the two dimensional space where

d`2 = dr2 + r2dθ2. (5.7)

Here h11 = 1, h12 = h21 = 0, h22 = r2. The space looks likeR2 but actually it
is E2 because we can find coordinate such that (5.3) is true. These coordinate
are the two-dimensional plane polar coordinates

x = r cos θ (5.8)
y = r sin θ (5.9)

in which
d`2 = dx2 + dy2, (5.10)

with g11 = g22=1 and g12 = g21 = 0 or gµν = δµν .
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Recall that for 3-dimensional spherical polar coordinates

x = r sin θ cosφ (5.11)
y = r sin θ sinφ (5.12)
z = r cos θ (5.13)

and the increments of length d`r, d`θ, d`φ is the er, eθ and eφ directions
respectively are

d`r = dr (5.14)
d`θ = rdθ (5.15)
d`φ = r sin θdφ. (5.16)

Thus the surfaces of a sphere is an example of a space which is R2 and
cannot be reduced to E2. On the surface of the sphere the distance between
two points is

d`2 = d`2θ + d`2φ (5.17)

= r2dθ2 + r2 sin2 θdφ2 (5.18)

where h11 = r2, h12 = h21 = 0, h22 = r2 sin2 θ. For this surface it is not
possible to find x, y such that ds2 = dx2 + dy2 and therefore the surface of
a sphere is not E∈ but rather a genuine R∈ space.

5.1.2 Volumes and Change of Coordinates

The measure is the volume element in some set of coordinates. There are 3
ways to calculate the measure.

1) Infinitesimal Length Method is one in which one identifies the infin-
tesimal increments of length and simply multiplies them together to get the
volume element. In Cartesian Coordinates we have d`x = dx, d`y = dy, and
d`z = dz to give

dV = d`xd`yd`z = dxdydz. (5.19)

In 2-d plane polar coordinates d`r = dr and d`θ = rdθ to give

dV = d`rd`θ = rdrdθ (5.20)

(actually this ”volume” is an area). In 3-D spherical polar coordinates d`r =
dr, d`θ = dθ and d`φ = r sin dφ to give

dV = d`rd`θd`φ = r2 sin θdrdθdφ. (5.21)
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2) Jacobian Method is the one usually mentioned in introductory calculus
books ([?] Pg.746) for changing variables. Suppose x = x(u, v) and y =
y(u, v) then∫ ∫

f(x, y)dxdy =
∫ ∫

f [x(u, v), y(u, v)] | J(u, v) | dudv (5.22)

where | J(u, v) | is the modulus of the Jacobian defined as

J(u, v) ≡

∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣ (5.23)

For 3-dimensions with x = x(u, v, w), y = y(u, v, w) and z = z(u, v, w) we
have

J(u, v, w) ≡

∣∣∣∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣∣∣∣
(5.24)

For Cartesian coordinates obviously J(x, y, z) = 1. For plane polar coordi-
nates (x = r cos θ, y = r sin θ)

J(r, θ) =

∣∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣∣ = r (5.25)

and for spherical polar coordinates (x = r sin θ cosφ, y = r sin θ cosφ, z =
r cos θ)

J(r, θ, φ) =

∣∣∣∣∣∣∣
sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

∣∣∣∣∣∣∣ = r2 sin θ (5.26)

The volume element in 2-d is

dV =| J(u, v) | dudv (5.27)

and in 3-d it is
dV =| J(u, v, w) | dudvdw (5.28)

which then reproduce equations (5.19), (5.139) and (5.140) for Cartesian,
plane polar and spherical polar coordinates.

3) Metric Tensor Method is what we prefer in general relativity. Here
([21], Pg.33)
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dV =
√
hdudvdw

(5.29)

where h is the determinant of the spatial metric tensor. Thus

| J |=
√
h

(5.30)

For a plane polar coordinates ds2 = dr2 + r2dθ2 ≡ gijdxidxj so that

h =

∣∣∣∣∣ 1 0
0 r2

∣∣∣∣∣ = r2 (5.31)

giving
√
h = r so that dV =

√
hdrdθ in agreement with (5.139). For spherical

polar coordinates d`2 = dr2 + r2dθ2 + r2 sin2 θdφ2 ≡ hijdxidxj giving

h =

∣∣∣∣∣∣∣
1 0 0
0 r2 0
0 0 r2 sin2 θ

∣∣∣∣∣∣∣ = r4 sin2 θ (5.32)

giving
√
h = r2 sin θ so that dV =

√
hdrdθdφ = r2 sin θdrdθdφ in agreement

with (5.140).
Thus define

d2x ≡ dudv

d3x ≡ dudvdw

d4x ≡ dudvdwdt (5.33)

so that the measure is

dV =
√
hd2x or

√
hd3x

(5.34)

depending on the number of dimensions. It is important to remember that
d3x or d4x om this notation is not d`1d`2d`3 or d`1d`2d`3d`4 but simply only
the coordinates. For example in spherical polar coordinates

d3x ≡ drdθdφ (5.35)

or with time
d4x ≡ drdθdφdt. (5.36)

The measure is volume is obtained with dV =
√
hd3x or

√−gd4x (because
for 4-d we use gµν and hij = −gij and h = −g). Thus in general
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dV 6= d3x

or

dV 6= d4x

in contrast to conventions used, say in undergraduate physics books.

5.1.3 Differential Geometry

A Good reference for differential geometry is the book by Lipschutz [?].
Introductory material is discussed by Purcell and Varberg [?] (Pg.625-634,
285-290).

Previously we wrote the definition of a circle as x2 + y2 = r2 which
could be written generally as y = y(x). The same equation can be expressed
parametrically in terms of the parameter θ as x = r cos θ and y = r sin θ or
generally as x = x(θ) and y = y(θ). For many curves the form y = y(x)
can be clumsy and nowadays mathematicians always prefer the parametric
representation. (See [?] Pg.570). Another way to write our equation for the
circle (radius=1) is

x = cos θê1 + sin θê2 (5.37)

where ê1 and ê2 are basis vectors in E2.
Thus a general curve (Chapter 3 of [?]) is expressed as

x = x(t) (5.38)

where t is the parameter. If the basis is chosen to be E2 then x = x(t) is
equivalent to two scalar equations x1 = x1(t) and x2 = x2(t). Thus a curve
can be specified in any number of dimensions. For our circle above we have
x1 = x1(θ) = cos θ and x2 = x2 = sin θ.

A general surface (Chapter 8 of [?]) is expressed as

x = x(u, v). (5.39)

If, for example, the basis in E3 then

x(u, v) = x1(u, v)ê1 + x2(u, v)ê2 + x3(u, v)ê3. (5.40)

Good references of the next 3 sections are the books by Kolb and Turner
([21], Pg.31-35) and Landau ([?], Pg.177-181) and Ohanian and Ruffini ([8],
Pg546-552) and Chow ([28], Pg.197-200) and the article by Kung [?].
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5.1.4 1-dimesional Curve

Let us first consider the circle, often called the one sphere denoted by S1.
Recall that for a circle the radius R, the proper way to express it is in terms
of 1-dimensional parameter θ as

x(θ) = R(cos θê1 + sin θê2). (5.41)

However in introductory books one always introduces a ficticous extra di-
mension and embeds the 1-d curve in a 2-d Euclidean space via

x2 + y2 = R2 (5.42)

which we recognize as the equation for a circle. Remember though this
equation is really overkill. It is a 2-d equation for a 1-d curve! The 1-
parameter equation (5.41) is much better. We can also write

x2
1 + x2

2 = R2. (5.43)

The element of length in the 2-d Euclidean space is

d`2 = dx2
1 + dx2

2. (5.44)

In an ordinary 2-d Euclidean space x and y (or x1 and x2) are free to vary
independently and this is how the whole 2-d space get covered. Equation
(5.44) is true in general. However the reason that (5.42) or (5.43) describes
a circle is because it constrains the value of y in terms of x. This constraint
(5.42) picks our only those points in E2 which give the circle.

Equation (5.44) covers all of E2. We can constrain it for the circle by
reducing the two parameters x1 and x2 to only one parameter. Thus we will
have d` for the circle. We do this using the 2-d constraint (5.43) and writing
y =
√
R2 − x2 and dy = −x√

R2−x2
dx so that

dy2 =
x2

R2 − x2
dx2. (5.45)

Note that dy2 ≡ (dy)2 and dy2 6= d(y2). Thus (5.44) becomes

d`2 = dx2 +
x2

R2 − x2
dx2

=
R2

R2 − x2
dx2. (5.46)
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This can also be written in terms of the dimensionless coordinate

r ≡ x

R
(5.47)

to give

d`2 = R2 dr2

1− r2
(5.48)

where R is the radius of the space (the circle).
Another convenient coordinate system for the circle use the angle θ from

plane polar coordinates specified via

x = R cos θ
y = R sin θ. (5.49)

Identifying the increments of length d`R and d`θ in the êR and êθ directions
as

d`R = dR

d`θ = Rdθ (5.50)

then

d`2 = d`2R + d`2θ

= dR2 +R2dθ2 (5.51)

which gives the distance d` in the 2-d space. To restrict ourselves to the rim
of the circle (curved 1-d space) we fix d`R = dR = 0 and get

d`2 = R2dθ2 (5.52)

which makes it obvious that the space is the one sphere (circle) of radius R.
Using simple trigonometry one can show that (5.52) is the same as (5.46).
(Do Problem 5.1)

Using d`2 ≡ hijdxidxj we evidently have

hij = (R2) (5.53)

which is a 1-dimensional ”motion”. The determinant is obviously h = R2

giving
√
h = R. This allows us to calculate the volume (we are calling the

length a geological volume) as

V =
∫ √

hd1x =
∫ 2π

0
Rdθ = 2πR (5.54)
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The 1-d curve that we described above is the circle or one sphere denoted
S1. However there are three 1-d spaces which are homogeneous and isotropic.
There are i) the flat x line (R1), ii) the positively curved one sphere (S1)
derived above and iii) the negatively curved hyperbolic curve (H1). [21]

The formulas for a space of constant negative curvature [21] can be ob-
tained with the replacement

R→ iR (5.55)

to yield

d`2 =
−R2

−R2 − x2
dx2

=
R2

R2 + x2
dx2 (5.56)

or using r ≡ x
R

d`2 = R2 dr2

1 + r2
. (5.57)

These results are also obtained by embedding in Minkowski space ( do Prob-
lem 5.2).

The line element for a space of zero curvature is obviously just

d`2 = dx2 (5.58)

or using r ≡ x
R

d`2 = R2dr2. (5.59)

These formulas are obtained from S1 or H1 by letting R→∞.
We can collect our results for R1, S1 and H1 into a single formula

d`2 =
R2

R2 − kx2
dx2 (5.60)

or using r ≡ x
R

d`2 = R2 dr2

1−kR2

(5.61)

where k = 0,+1,−1 for flat, closed and open curves respectively. (i.e. for
R1, S1 and H1 respectively)
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5.1.5 2-dimensional Surface

Kolb and Turner [21] analyze this problem very nicely. Other references are
listed following equation (5.40).

A surface is represented by two parameters u, v and expressed as x =
x(u, v) as mentioned previously. However we shall introduce a surface ficti-
cious coordinate (three parameters) and embedding the surface in E3. Thus
with 3 parameters the equation for the two sphere is

x2 + y2 + z2 +R2 (5.62)

which we recognize as the equation for a sphere used in introductory books.
However this equation is overkill. It is a 3-d equation for a 2-d surface. We
can also write

x2
1 + x2

2 + x2
3 = R2. (5.63)

Any 3-d Euclidean space E3 has length element

d`2 = dx2
1 + dx2

2 + dx2
3 (5.64)

which under normal circumstances would map out the whole 3-d volume.
However (5.63) restricts x3 according to

x2
3 = R2 − x2

1 − x2
2. (5.65)

Writing

dx3 =
∂x3

∂x1
dx1 +

∂x3

∂x2
dx2 (5.66)

and with ∂x3
∂x1

= −x1√
R2−x2

1−x2
2

we have

dx3 = − x1dx1 + x2dx2√
R2 − x2

1 − x2
2

(5.67)

or

dx2
3 =

(x1dx1 + x2dx2)2

R2 − x2
1 − x2

2

(5.68)

to give ([21], Pg.32)

d`2 = dx2
1 + dx2

2 +
x1dx1 + x2dx2)2

R2 − x2
1 − x2

2

(5.69)
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which is re-written as

d`2 =
1

R2 − x2
1 − x2

2

[(R2−x2
2)dx2

1+(R2−x2
1)dx2

2+x1x2dx1dx2+x2x1dx2dx1].

(5.70)
Let us introduce plane polar coordinates in the x3 plane as

x1 = r′ cos θ x2 = r′ sin θ. (5.71)

These coordinates are shown very clearly in Fig 2.1, Pg.32 of Kolb and
Turner [21]. Thus

θ : 0 → 2π
r′ : 0 → R. (5.72)

Using

dxi =
∂xi
∂x1

dr′ +
∂xi
∂θ

dθ (5.73)

then (5.69) and (5.70) become

d`2 =
R2

R2 − r′2dr
′2 + r′2dθ2. (5.74)

This can also be written in terms of the dimensionless coordinate

r ≡ r′

R
(5.75)

to give

d`2 = R2[
dr2

1− r2
+ r2dθ2] (5.76)

where
r : 0 → 1. (5.77)

Another convenient coordinate system for the two sphere uses angles θ
and φ from spherical polar coordinates specified via

x = R sin θ cosφ (5.78)
y = R sin θ sinφ (5.79)
z = R cos θ (5.80)

and substituting into (5.64) directly yields

d`2 = R2(dθ2 + sin2 θdφ2). (5.81)
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Equation (5.81) is alternatively obtained by identifying the increments of
length d`R, d`θ, d`φ in the êR, êθ and êφ directions as

d`R = dR (5.82)
d`θ = Rdθ (5.83)
d`φ = R sin θdφ (5.84)

then

d`2 = d`2R + d`2θ + d`2φ

= dR2 +R2(dθ2 + sin2 θdφ2) (5.85)

gives the distance ds in the 3-d space. To restrict ourselves to the surface of
the sphere (curved 2-d space) we find d`R = dR = 0 and get

d`2 = R2(dθ2 + sin2 θdφ2) (5.86)

in agreement with (5.81).
Using d`2 ≡ hijdxidxj we evidently have for S2

hij =

(
R2 0
0 R2 sin2 θ

)
(5.87)

The determinant is obviously

h = R4 sin2 θ (5.88)

giving
√
h = R2 sin θ. The volume (we are calling the surface area a gener-

alized volume) is

V =
∫ √

hd2x =
∫ √

hdθdφ+R2
∫ π

0
sin theta

∫ 2π

0
dφ = 4πR2 (5.89)

Actually there are three 2-d spaces which are homogenous and isotropic.
There are 1) the flat x − y plane (R2), ii) the positively curved two sphere
(S2) and iii) the negatively curved two hyperbola (H2).

As before we can obtain the formula for H2 with the replacement

R→ iR (5.90)

to yield

d`2 = R2[
dr2

1 + r2
+ r2dθ2]. (5.91)
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This result is also obtained by embedding in Minkowski space. The metric
corresponding to (5.81) is ([21], Pg.34, equation 2.17)

d`2 = R2(dθ2 + sin2 θdφ2). (5.92)

We can collect our results for R2, S2 and H2 into a single formula

d`2 = R2(
dr2

1− kr2
+ r2dθ2) (5.93)

where k=0, +1, -1 for flat (R2), closed (S2) and open (H2) surfaces respec-
tively.

The volume can be alternatively calculated using d`2 = hijdx
idxj in

(5.93) we have

hij =

(
R2

1−kr2 0
0 R2r2

)
(5.94)

giving the determinant

h =
R2r2

1− kr2
(5.95)

or
√
h = R2r√

1−kr2
. The volume is

V =
∫ √

hd2x =
∫ √

h = R2
∫ 0

0

rdr√
1− kr2

∫ 2π

0
dθ (5.96)

= 2πR2
∫ 0

0

rdr√
1− kr2

. (5.97)

The limits of integration
∫ 0

0 dr can be clearly seen from Fig 2.1 of Kolb and
Turner [21], Pg.32. What this really means is∫ 0

0
dr ≡ 2

∫ R

0
dr (5.98)

where r = 0 at θ = 0 and r = R at θ = π
2 and r = 0 again at θ = π.

(See bottom Pg.179 and top pg.180 of the book by Lawden [?] for more
explanation)

The integral and its limits are more clearly done with the substitution
√
kr ≡ sinχ (5.99)
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when
χ : 0 → π. (5.100)

Thus
∫ π

0 dχ is equivalent to
∫ 0

0 dr = 2
∫ R

0 dr. Thus the volume in equation
(5.97) becomes

V = 2πR2
∫ π

0

1√
k

1√
k

sinχdχ (5.101)

giving

V =
4πR2

k
. (5.102)

Thus for k = +1 we have V = 4πR2 as before. For k = 0 we have V = ∞
and for k = −1 we need to do the integral again. We would find V =∞ for
k = −1.

5.1.6 3-dimensional Hypersurface

Proceeding upwards in our number of dimensions we might inquire a ”curved
volume”. But the curvature can really only be imagined with respect to
embedding in a 4-dimensional Euclidean space E4. We call the 4-d space as
a hypersurface.

Our 4-d Euclidean space (into which we will embed the hypersurface)
has length element

d`2 = dx2
1 + dx2

2 + dx2
3 + dx2

4 (5.103)

(it is d`2 and not ds2).
A hypersurface is represented by three parameters u, v, w and is ex-

pressed as x = x(u, v, w). Introduce an extra ficticious coordinate for the
three sphere S3 as

x2 + y2 + z2 + w2 = R2

x2
1 + x2

2 + x2
3 + x2

4 = R2 (5.104)

which restricts x4 as
x2

4 = R2 − x2
1 − x2

2 − x2
3. (5.105)

Writing

dx4 =
∂x4

∂x1
dx1 +

∂x4

∂x2
dx2 +

∂x4

∂x3
dx3 (5.106)
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and with ∂x4
∂x1

= −x1√
R2−x2

1−x2
2−x2

3

etc. we have

dx4 = −x1dx1 + x2dx2 + x3dx3√
R2 − x2

1 − x2
2 − x2

3

(5.107)

or

dx2
4 =

(x1dx1 + x2dx2 + x3dx3)2

R2 − x2
1 − x2

2 − x2
3

(5.108)

to give ([21], Pg.34)

d`2 = dx2
1 + dx2

2 + dx2
3 +

(x1dx1 + x2dx2 + x3dx3)2

R2 − x2
1 − x2

2 − x2
3

. (5.109)

Let us introduce spherical polar coordinates in the x4 hyperplane as

x1 = r′ sin θ cosφ (5.110)
x2 = r′ sin θ sinφ (5.111)
x3 = r′ cos θ (5.112)

where

θ : 0 → π (5.113)
φ : 0 → 2π (5.114)
r′ : 0→ R. (5.115)

Using

dxi =
∂xi
∂r′

dr′.+
∂xi
∂θ

dθ +
∂xi
∂φ

dφ (5.116)

then (5.109) becomes

d`2 =
R2

R2 − r′2dr
′2 + r′2dθ2 + r′2 sin2 θdφ2 (5.117)

Introducing the dimensionless coordinate

r ≡ r′

R
(5.118)

gives

d`2 = R2[
dr2

1− r2
+ r2dθ2 + r2 sin2 θdφ2] (5.119)
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where
r : 0 → 1. (5.120)

Another convenient coordinate system for the three sphere uses angles
χ, θ, φ from 4-dimensional hyperspherical polar coordinates specified via

x = R sinχ sin θ cosφ (5.121)
y = R sinχ sin θ sinφ (5.122)
z = R sinχ cos θ (5.123)
w = R cosχ. (5.124)

Substituting into (5.119) directly yields

d`2 = R2[dχ2 + sin2 χ(dθ2 + sin2 θdφ2)]. (5.125)

Using d`2 = hijdx
idxj we have

hij =

 R2 0 0
0 R2 sin2 χ 0
0 0 R2 sin2 χ sin2 θ

 (5.126)

The determinant is
h = R6 sin4 χ sin2 θ (5.127)

giving
√
h = R3 sin2 χ sin θ. The volume is

V =
∫ √

hd3x =
∫ √

hdχdθdφ

= R3
∫ π

0
sin2 χdχ

∫ π

0
sin θdθ

∫ 2π

0
dφ (5.128)

where the limits
∫ π

0 dχ are the same as in the previous section. Thus

V = 4πR3
∫ π

0
sin2 χdχ = 4πR3[

χ

2
− sin 2χ

4
]π0 (5.129)

giving
V = 2π2R3 (5.130)

for the volume of our hypersphere. Compare this to the volume of a Eu-
clidean sphere 4

3πR
3.

For a flat, open and closed hyperspheres the metric is

d`2 = R2[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2] (5.131)
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The volume can be calculated alternatively. Using d` = hijdxidxj in
(5.131) we have

hij =

 R2

1−kr2 0 0
0 R2r2 0
0 0 R2r2 sin2 θ

 (5.132)

giving the determinant h = R6r4 sin2 θ
1−kr2 . The volume is

V =
∫ √

hd3x =
∫ √

hdrdθdφ

= R3
∫ 0

0

r2dr√
1− kr2

∫ π

0
sin θdθ

∫ 2π

0
dφ

= 4πR3
∫ 0

0

r2dr√
1− kr2

. (5.133)

The limits of integration are the same as discussed in equation (5.98).
Using the substitution √

kr ≡ sinχ′ (5.134)

with
χ′ : 0 → π (5.135)

becuase χ : 0 → π. Thus the volume is

V = 4πR3
∫ π

0

1
k3/2

sin2 χdχ (5.136)

giving

V =
2π2R3

k3/2
. (5.137)

For k = +1 this agrees with our result before.

5.2 Friedmann-Robertson-Walker Metric

The metric of Special Relativity is

ds2 = c2dt− (dx2dy2dz2). (5.138)

Clearly the spatial part is a 3-d Euclidean flat space. We have seen that the
spatial metric for a homogeneous, isotropic curved space with a size R(t)
that can change in time is

ds2 = R2(t)[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)]. (5.139)
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Replacing the spatial part of the special relativity metric with (5.139) we
have the Friedmann-Robertson-Walker (FRW) metric [13]

ds2 = c2dt2 −R2(t)[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)] (5.140)

where R(t) is called the scale factor and the constant k can be 0,±1 depend-
ing on the curvature. This can also be derived with the use of Killing vectors
[13].

Writing ds2 ≡ gµνdxµdxν and identifying

x0 = ct (5.141)

x1 = r (5.142)

x2 = θ (5.143)

x3 = φ (5.144)

we have
g00 = 1 (5.145)

g11 =
−R2

1− kr2
(5.146)

g22 = −R2r2 (5.147)

g33 = −R2r2 sin2 θ (5.148)

Defining the determinant

g ≡ detgµν = g00g11g22g33 (5.149)

= −R
6r4 sin2 θ

1− kr2
(5.150)

(Note that this is not g = detgµν .) Thus

√−g =
R3r2 sin θ√

1− kr2
. (5.151)

If gµν is represented by a matrix [gµν ], then we found previously that
gµν is just the inverse of this metric namely [gµν ]−1. For a diagonal matrix
(which we have for the FRW metric) each matrix element is simply given by
gµν = 1

gµν
. Thus it’s easy to get

g00 = 1 (5.152)
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g11 = −(1− kr2)
R2

(5.153)

g22 =
−1
R2r2

(5.154)

g33 =
−1

R2r2 sin2 θ
. (5.155)

5.2.1 Christoffel Symbols

We now calculate the Christoffel symbols using equation (3.69). Fortunately
we need not calculate all of them. We can use the symmetry Γαβγ = Γαγβ to
shorten the job. We have

Γαβγ ≡ 1
2
gαε(gεβ,γ + gαγ,β − gβγ,ε) = Γαγβ

=
1
2
gαα(gαβ,γ + gαγ,β − gβγ,α) (5.156)

which follows because gαε = 0 unless ε = α. (gµν is a diagonal matrix for
the FRW metric.) The only non-zero Christoffel symbols are the following:

Γ0
11 =

1
2
g00(g01,1 + g01,1 − g11,0) = −1

2
g11,0

because g01 = 0 and g00 = 1. This becomes (let’s now set c ≡ 1)

Γ0
11 = −1

2
g11,0 = −1

2
∂

∂t
(
−R2

1− kr2
)

=
1
2

1
1− kr2

∂R2

∂t
=

2RṘ
2(1− kr2)

=
RṘ

1− kr2
(5.157)

because r 6= r(t) and R = R(t). Proceeding

Γ0
22 = −1

2
g22,0 = −1

2
∂

∂t
(−R2r2) = r2RṘ (5.158)

Γ0
33 = r2 sin2 θRṘ (5.159)

Γ1
11 =

kr

1− kr2
(5.160)

Γ1
22 = −r(1− kr2) (5.161)

Γ1
33 = −r(1− kr2) sin2 θ (5.162)
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Γ2
12 = Γ3

13 =
1
r

(5.163)

Γ2
33 = − sin θ cos θ (5.164)

Γ3
23 = cot θ (5.165)

Γ1
01 = Γ2

02 = Γ3
03 =

Ṙ

R
(5.166)

(do Problems 5.2 and 5.3)

5.2.2 Ricci Tensor

Using equation (??) we can now calculate the Ricci tensor. For the FRW
metric it turns out that Rµν = 0 for µ 6= ν, so that the non-zero components
are R00, R11, R22, R33. Proceeding we have

R00 =
1√−g (Γε00

√−g),−(ln
√−g),00 − Γε0θΓ

θ
0ε

but Γε00 = 0 giving

R00 = −(ln
√−g),00 − Γ0

0θΓ
θ
00 − Γ1

0θΓ
θ
01 − Γ2

0θΓ
θ
02 − Γ3

0θΓ
θ
03

when we have performed the sum over ε. The term Γθ0θ = 0. In the last
three terms we have Γα0θ where α = 1, 2, 3. Now Γα0θ = 0 for θ 6= α, so that
we must have θ = 1, 2, 3 in the third, forth and fifth terms respectively. Also
the second term contains Γ0

0θ which is always 0. Thus

R00 = −(ln
√−g),00 − Γ1

10Γ1
01 − Γ2

02Γ2
02 − Γ3

03Γ3
03

= −(ln
√−g),00 − (Γ1

01)2 − (Γ2
02)2 − (Γ3

03)2

= −(ln
√−g),00 − 3(

Ṙ

R
)2

Now

(
√−g),0

∂
√−g
∂x′

=
∂
√−g
∂t

=
r2 sin θ√
1− kr2

∂R3

∂t
=

r2 sin θ√
1− kr2

3R2Ṙ

and

(ln
√−g),µ ≡

∂ ln
√−g
∂xµ

=
∂ ln
√−g

∂
√−g

∂
√−g
∂xµ

=
1√−g

∂
√−g
∂xµ
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so that

(ln
√−g),0 =

1
−√−g

∂
√−g
∂x0

=
√

1− kr2

R3r2 sin θ
R2 sin θ√
1− kr2

3R2Ṙ = 3
Ṙ

R

giving

(ln
√−g),00 = 3

∂

∂t
(
Ṙ

R
) = 3

RR̈− Ṙ2

R2
= 3

R̈

R
− 3(

Ṙ

R
)2.

We finally have

R00 = −3
Ṙ

R
. (5.167)

One can similaraly show that

R11 =
RR̈− 2Ṙ2 + 2k

1− kr2
(5.168)

R22 = r2(RR̈+ 2Ṙ2 + 2k) (5.169)

R33 = r2 sin2 θ(RṘ+ 2Ṙ2 + 2k) (5.170)

(do Problem 5.4)

5.2.3 Riemann Scalar and Einstein Tensor

We now calculate the Ricci scalar R≡ RRαα ≡ gαβRαβ . The only non-zero
contributions are

R = g00R00 + g11R11 + g22R22 + g33R33 (5.171)

= −6[
R̈

R
+ (

Ṙ

R
)2 +

k

R2
] (5.172)

(do Problem 5.5). Finally we calculate the Einstein tensor Gµν ≡ Rµν −
1
2Rgµν . The only non-zero component are for µ = ν. We obtain

G00 = 3[(
Ṙ

R
)2 +

k

R2
] (5.173)

G11 =
−1

1− kr2
(2R̈R+ Ṙ2 + k) (5.174)

G22 = −r2(2R̈R+ Ṙ2 + k) (5.175)

G33 = −r2 sin2 θ(2R̈R+ Ṙ2 + k) (5.176)

(do Problem 5.6).
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5.2.4 Energy-Momentum Tensor

For a perfect fluid the energy momentum tensor is given in equation (4.26)
as

Tµν = (ρ+ p)uµν − pηµν (5.177)

The tensor for Tµν is written is (4.28) for the metric of Special Relativity.
For an arbitrary metric in General Relativity we have

Tµν = (ρ+ p)uµν − pgµν (5.178)

where we shall use gµν from our FRW model. For a motionless fluid recall
that uµ = (c,0) or Uµ = (c,−0) = (c,0) = (1,0) for c ≡ 1. Thus

T00 = ρ+ p− p = ρ (5.179)

and
Tii = −pgii (5.180)

because ui = 0. Upon substitution of the FRW values for the metric given
is equations (5.145)-(5.148) we have

Tµν =


ρ 0 0 0
0 p R2

1−kr2 0 0
0 0 pR2r2 0
0 0 0 pR2r2 sin2 θ

 (5.181)

5.2.5 Friedmann Equations

Finally we substitute our results into the Einstein field equations Gµν =
8πGTµν + Λgµν .

The µν = 00 component is

3[(
Ṙ

R
)2 +

k

R2
] = 8πGρ+ Λ

giving

H2 ≡ (
Ṙ

R
)2 =

8πG
3

ρ− k

R2
+

Λ
3
. (5.182)

The µν = 11 component is

−1
1− kr2

(2R̈R+ Ṙ2 + k) = 8πGp
R2

1− kr2
+ Λ

−R2

1− kr2
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giving

2
R̈

R
+ (

Ṙ

R
)2 +

k

R2
= −8πGp+ Λ.

But we now use our previous result (5.182) to give

2
R̈

R
+

8πG
3

ρ+
Λ
3

= −8πGp+ Λ

to finally give
R̈

R
=

4πG
3

(ρ+ 3p) +
Λ
3

(5.183)

(do Problem 5.7).

5.3 Problems

5.1 For the FRW metric show that Γ1
33 − (1− kr2)r sin2 θ and Γ = cot θ.

5.2 Show that, for example, Γ1
22 = Γ2

23 = 0 for the FRW metric.

5.3 Show that R22 = r2(RR̈+ 2 cotR2 + 2k) for the FRW metric.

5.4 Show that the Ricci scalar is R= −6[ R̈R +( ṘR)2 + k
R2 ] for the FRW metric.

5.5 Calculate Gµν for the FRW metric.

5.6 Show that the µν = 22 and µν = 33 components of the Einstein’s
equations for the FRW metric yield the same equation (5.63) as the µν = 11
component.
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Chapter 6

Einstein Field Equations

Gµν = kTµν

go through history e.g. he first tried Rµν = kTµν etc

107
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Chapter 7

Weak Field Limit

derivation of Gµν = kTµν from equiv princ.
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Chapter 8

Lagrangian Methods

Lagrangians for Gµν etc.
(NNNN have assumed special relativity g00 = +1) (NNN 5φ term seems

to disagree with Kolb and Turner Pg. 276 eqn 8.20).
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